怎么新建MySQL数据库

发布时间:2022-11-02 作者:admin
阅读:279
这篇文章主要介绍了“Pytho Seaborn库怎样使用,有哪些实例”相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Pytho Seaborn库怎样使用,有哪些实例文章都会有所收获,下面我们一起来看看吧。



免费资源网,https://freexyz.cn/
在本文中,我们将介绍10个示例,以掌握如何使用用于Python的Seaborn库创建图表。任何数据产品的第一步都应该是理解原始数据。对于成功和高效的产品,这一步骤占据了整个工作流程的很大一部分。

有几种方法用于理解和探索数据。其中之一是创建数据可视化。它们帮助我们探索和解释数据。

通过创建适当和设计良好的可视化,我们可以发现数据中的底层结构和关系。

分布区在数据分析中起着至关重要的作用。它们帮助我们检测异常值和偏态,或获得集中趋势(平均值、中值和模态)度量的概述。

对于示例,我们将使用Kaggle上可用的墨尔本住房数据集中的一个小样本。

我们从导入库并将数据集读入Pandas数据帧开始。

import pandas as pd 
import seaborn as sns 
sns.set(style="darkgrid", font_scale=1.2) 
df = pd.read_csv( 
  "/content/melb_housing.csv",  
  usecols=["Regionname", "Type", "Rooms", "Distance", "Price"] 
) 
df.head()

该数据集包含了墨尔本房屋的一些特征及其价格。

Seaborn的离散函数允许创建3种不同类型的分布区,分别是:

  • 柱状图
  • Kde(核密度估计)图
  • Ecdf图

我们只需要调整kind参数来选择plot的类型。

示例 1

第一个例子是创建一个基本直方图。它将连续变量的取值范围划分为离散的箱子,并显示每个箱子中有多少个值。

sns.displot( 
  data=df, 
  x="Price", 
  kind="hist", 
  aspect=1.4 
)

我们将df的名称传递给数据参数。参数x接受要绘制的列名。aspect参数调整大小的宽高比。它也可以改变高度。

示例 2

在第一个例子中,我们可以清楚地看到价格栏中有一些异常值。柱状图在右边有一条长尾,这表明价格非常高的房子很少。

减少这种异常值影响的一种方法是对值取对数。displot函数可以使用log_scale参数执行此操作。

sns.displot( 
  data=df, 
  x="Price", 
  kind="hist", 
  aspect=1.4, 
  log_scale=10 
)

价格以10的幂表示。现在我们对房价的分布有了一个更好的概述。

示例 3

我们还可以调整直方图中的箱数量。在某些情况下,最好使用较少的箱数量,这样我们就可以得到一个更结构化的概述。

用于此调整的参数是box。

sns.displot( 
  data=df, 
  x="Price", 
  kind="hist", 
  aspect=1.4, 
  log_scale=10, 
  bins=20 
)

示例 4

数据集还包含分类变量。例如,类型列有3个类别,分别是h(房屋)、t(联排房屋)和u(单位)。我们可能需要分别检查每款的分布情况。

一种选择是在相同的可视化中用不同的颜色显示它们。我们只需要将列的名称传递给hue参数。

sns.displot( 
  data=df, 
  x="Price", 
  hue="Type", 
  kind="hist", 
  aspect=1.4, 
  log_scale=10, 
  bins=20 
)

这个图为我们提供了2条信息:

  • 每个类别的大小与房屋的数量有关。h类是最大的一类。
  • 每类房屋的价格分布。

示例 5

另一个检查每个类别分布的选项是创建单独的子图。我们可以对这个任务使用col或row参数。给定列中的每个类别都有一个子图。

sns.displot( 
  data=df, 
  x="Price", 
  col="Type", 
  kind="hist", 
  aspect=1.4, 
  log_scale=10, 
  bins=20 
)

例子 6

displot函数还允许生成二维直方图。因此,我们得到了关于两列中值的观察值(即行)分布的概述。

我们使用价格和距离列创建一个。我们只是将列名传递给x和y参数。

sns.displot( 
  data=df, 
  x="Price", 
  y="Distance", 
  col="Type", 
  kind="hist", 
  height=5, 
  aspect=1.2, 
  log_scale=(10,0), 
  bins=20 
)

较暗的区域密度更大,所以它们包含了更多的观测数据。两列看起来都是正态分布,因为密集的区域在中心。

你可能已经注意到,我们使用了一个元组作为log_scale参数的参数。因此,我们可以为每个列传递不同的比例。

例子 7

Kde图还可以用于可视化变量的分布。它们和直方图很相似。然而,kde图使用连续的概率密度曲线来表示分布,而不是使用离散的箱。

kind参数设置为“kde”,以生成kde图。

sns.displot( 
  data=df, 
  x="Price", 
  kind="kde", 
  aspect=1.4, 
  log_scale=10 
)

示例 8

与直方图类似,可以为不同的类别分别绘制kde图。我们的数据集包含房屋的区域信息。我们看看不同地区的价格变化。

sns.displot( 
  data=df, 
  x="Price", 
  hue="Regionname", 
  kind="kde", 
  height=6, 
  aspect=1.4, 
  log_scale=10 
)

南方大都市区的平均房价似乎最高。

示例 9

另一种检查变量分布的方法是使用ecdf图。它表示低于给定列中每个唯一值的观察值的比例或计数。

这是一种可视化的累计和。因此,我们能够看到更密集的值范围。

sns.displot( 
  data=df, 
  x="Distance", 
  kind="ecdf", 
  height=6, 
  aspect=1.4, 
  stat="count" 
)

曲线斜率高的值范围有更多的观测值。例如,我们没有很多房子的距离超过30。与此相反,在10到15的距离范围内有很多房子。

示例10

ecdf图也支持hue、col和row参数。因此,我们可以在一个列中区分不同类别之间的分布。

sns.displot( 
  data=df, 
  x="Distance", 
  kind="ecdf", 
  hue="Type", 
  height=6, 
  aspect=1.4, 
  stat="count" 
)

对于数据分析或机器学习任务,了解变量(即特征)的分布是非常重要的。我们如何处理给定的任务可能取决于分布。


以上就是关于“Pytho Seaborn库怎样使用,有哪些实例”的介绍了,感谢各位的阅读,希望这篇文章能帮助大家解决问题。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145