import pandas as pd
# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')
# 计算data每一行有多少个缺失值的值,即按行统计缺失值
rows_null = df.isnull().sum(axis=1)
# 下面则是按列统计缺失值
col_null = df.isnull().sum(axis=0)
#统计整个df的缺失值
all_null = df.isnull().sum().sum()
# 统计某一列的缺失值
idx_null = df['列名'].isnull().sum(axis=0)
import pandas as pd
# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')
# 计算data每一行有多少个非空的值,即按行统计非空值
rows_not_null = df.count(axis=1)
# 下面则是按列统计非空值
cols_not_null = df.count(axis=0)
cols_null = df.shape[1] - cols_not_null
# 统计某一列的非空值
col_not_null = df['列名'].count(axis=0)
def missing_values(dataframe):
missing_ratio = (dataframe.isnull().sum() / len(dataframe))*100
missing_ratio = missing_ratio.drop(missing_ratio[missing_ratio == 0].index).sort_values(ascending=False)
missing_count = dataframe.isnull().sum()
missing_count = missing_count.drop(missing_count[missing_count == 0].index).sort_values(ascending=False)
info = pd.DataFrame({'Missing Ratio': missing_ratio, 'Missing Count': missing_count})
return info免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理