怎么新建MySQL数据库

发布时间:2022-09-21 作者:admin
阅读:324
这篇主要是介绍“什么是VGG16模型,复现及预测怎样实现”的内容了,下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家解决什么是VGG16模型,复现及预测怎样实现的问题,下面我们一起来了解看看吧。


目录
  • 什么是VGG16模型
  • VGG网络部分实现代码
  • 图片预测

学一些比较知名的模型对身体有好处噢!

什么是VGG16模型

VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。

可能大家会想,这样一个这么强的模型肯定很复杂吧?

其实一点也不复杂,它的结构如下图所示:

这是一个VGG被用到烂的图,但确实很好的反应了VGG的结构:

1、一张原始图片被resize到(224,224,3)。

2、conv1两次[3,3]卷积网络,输出的特征层为64,输出为(224,224,64),再2X2最大池化,输出net为(112,112,64)。

3、conv2两次[3,3]卷积网络,输出的特征层为128,输出net为(112,112,128),再2X2最大池化,输出net为(56,56,128)。

4、conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(56,56,256),再2X2最大池化,输出net为(28,28,256)。

5、conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(28,28,512),再2X2最大池化,输出net为(14,14,512)。

6、conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(14,14,512),再2X2最大池化,输出net为(7,7,512)。

7、利用卷积的方式模拟全连接层,效果等同,输出net为(1,1,4096)。共进行两次。

8、利用卷积的方式模拟全连接层,效果等同,输出net为(1,1,1000)。

最后输出的就是每个类的预测。

VGG网络部分实现代码

#-------------------------------------------------------------#
#   vgg16的网络部分
#-------------------------------------------------------------#
import tensorflow as tf
# 创建slim对象
slim = tf.contrib.slim
def vgg_16(inputs,
           num_classes=1000,
           is_training=True,
           dropout_keep_prob=0.5,
           spatial_squeeze=True,
           scope='vgg_16'):
    with tf.variable_scope(scope, 'vgg_16', [inputs]):
        # 建立vgg_16的网络
        # conv1两次[3,3]卷积网络,输出的特征层为64,输出为(224,224,64)
        net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
        # 2X2最大池化,输出net为(112,112,64)
        net = slim.max_pool2d(net, [2, 2], scope='pool1')
        # conv2两次[3,3]卷积网络,输出的特征层为128,输出net为(112,112,128)
        net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
        # 2X2最大池化,输出net为(56,56,128)
        net = slim.max_pool2d(net, [2, 2], scope='pool2')
        # conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(56,56,256)
        net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
        # 2X2最大池化,输出net为(28,28,256)
        net = slim.max_pool2d(net, [2, 2], scope='pool3')
        # conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(28,28,512)
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
        # 2X2最大池化,输出net为(14,14,512)
        net = slim.max_pool2d(net, [2, 2], scope='pool4')
        # conv3三次[3,3]卷积网络,输出的特征层为256,输出net为(14,14,512)
        net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
        # 2X2最大池化,输出net为(7,7,512)
        net = slim.max_pool2d(net, [2, 2], scope='pool5')
        # 利用卷积的方式模拟全连接层,效果等同,输出net为(1,1,4096)
        net = slim.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6')
        net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                            scope='dropout6')
        # 利用卷积的方式模拟全连接层,效果等同,输出net为(1,1,4096)
        net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
        net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                            scope='dropout7')
        # 利用卷积的方式模拟全连接层,效果等同,输出net为(1,1,1000)
        net = slim.conv2d(net, num_classes, [1, 1],
                        activation_fn=None,
                        normalizer_fn=None,
                        scope='fc8')
        # 由于用卷积的方式模拟全连接层,所以输出需要平铺
        if spatial_squeeze:
            net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
        return net

图片预测

在图片预测之前首先看看整个文档的结构。需要完整代码可以直接下载

VGG16的模型下载可以用

链接: https://pan.baidu.com/s/18IT3ILvnD0uUJDx9-ums2A

提取码: jr6u 完成

model用于存储模型,nets用于存储网络结构,test_data用于存放图片,demo就是之后要执行的测试程序。

图片预测的步骤其实就是利用训练好的模型进行预测。

1、载入图片

2、建立会话Session;

3、将img_input的placeholder传入网络,建立网络结构;

4、初始化所有变量;

5、利用saver对象restore载入所有参数。

6、读取预测结果

demo.py的代码如下:

from nets import vgg16
import tensorflow as tf
import numpy as np
import utils
# 读取图片
img1 = utils.load_image("./test_data/dog.jpg")
# 对输入的图片进行resize,使其shape满足(-1,224,224,3)
inputs = tf.placeholder(tf.float32,[None,None,3])
resized_img = utils.resize_image(inputs, (224, 224))
# 建立网络结构
prediction = vgg16.vgg_16(resized_img)
# 载入模型
sess = tf.Session()
ckpt_filename = './model/vgg_16.ckpt'
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, ckpt_filename)
# 最后结果进行softmax预测
pro = tf.nn.softmax(prediction)
pre = sess.run(pro,feed_dict={inputs:img1})
# 打印预测结果
utils.print_prob(pre[0], './synset.txt')

utils里是一些工具代码(工具人),包括载入图片、图片大小更改、打印预测结果等:

import matplotlib.image as mpimg
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import array_ops
def load_image(path):
    # 读取图片,rgb
    img = mpimg.imread(path)
    # 将图片修剪成中心的正方形
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    return crop_img
def resize_image(image, size,
                 method=tf.image.ResizeMethod.BILINEAR,
                 align_corners=False):
    with tf.name_scope('resize_image'):
        image = tf.expand_dims(image, 0)
        image = tf.image.resize_images(image, size,
                                       method, align_corners)
        image = tf.reshape(image, tf.stack([-1,size[0], size[1], 3]))
        return image
def print_prob(prob, file_path):
    synset = [l.strip() for l in open(file_path).readlines()]
    # 将概率从大到小排列的结果的序号存入pred
    pred = np.argsort(prob)[::-1]
    # 取最大的1个、5个。
    top1 = synset[pred[0]]
    print(("Top1: ", top1, prob[pred[0]]))
    top5 = [(synset[pred[i]], prob[pred[i]]) for i in range(5)]
    print(("Top5: ", top5))
    return top1

该图的预测结果为:

('Top1: ', 'n02099601 golden retriever', 0.98766345)
('Top5: ', [('n02099601 golden retriever', 0.98766345), ('n02099712 Labrador retriever', 0.0108569125), ('n02101556 clumber, clumber spaniel', 0.00039345716), ('n02102480 Sussex spaniel', 0.0002893341), ('n02102318 cocker spaniel, English cocker spaniel, cocker', 0.00018955152)])  

现在大家对于什么是VGG16模型,复现及预测怎样实现的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注群英网络,群英网络将为大家推送更多相关的文章。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145