在这篇文章中我们来了解一下“Python图像腐蚀和膨胀处理怎么实现”,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!
数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并出去不相干的结构。数学形态学的算法有天然的并行实现的结构,主要针对的是二值图像(0或1)。在图像处理方面,二值形态学经常应用到对图像进行分割、细化、抽取骨架、边缘提取、形状分析、角点检测,分水岭算法等。由于其算法简单,算法能够并行运算所以经常应用到硬件中[1-2]。
常见的图像形态学运算包括:
这些运算在OpenCV中主要通过MorphologyEx()函数实现,它能利用基本的膨胀和腐蚀技术,来执行更加高级形态学变换,如开闭运算、形态学梯度、顶帽、黑帽等,也可以实现最基本的图像膨胀和腐蚀。其函数原型如下:
dst = cv2.morphologyEx(src, model, kernel)
– src表示原始图像
– model表示图像进行形态学处理,包括:
(1)cv2.MORPH_OPEN:开运算(Opening Operation)
(2)cv2.MORPH_CLOSE:闭运算(Closing Operation)
(3)cv2.MORPH_GRADIENT:形态学梯度(Morphological Gradient)
(4)cv2.MORPH_TOPHAT:顶帽运算(Top Hat)
(5)cv2.MORPH_BLACKHAT:黑帽运算(Black Hat)
kernel表示卷积核,可以用numpy.ones()函数构建
图像的腐蚀(Erosion)和膨胀(Dilation)是两种基本的形态学运算,主要用来寻找图像中的极小区域和极大区域。图像腐蚀类似于“领域被蚕食”,它将图像中的高亮区域或白色部分进行缩减细化,其运行结果比原图的高亮区域更小。
设A,B为集合,A被B的腐蚀,记为A-B,其定义为:
该公式表示图像A用卷积模板B来进行腐蚀处理,通过模板B与图像A进行卷积计算,得出B覆盖区域的像素点最小值,并用这个最小值来替代参考点的像素值。如图1所示,将左边的原始图像A腐蚀处理为右边的效果图A-B。
图像腐蚀主要包括二值图像和卷积核两个输入对象,卷积核是腐蚀中的关键数组,采用Numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,被扫描到的原始图像中的像素点,只有当卷积核对应的元素值均为1时,其值才为1,否则将其像素值修改为0。在Python中,主要调用OpenCV的erode()函数实现图像腐蚀。
其函数原型如下:
dst = cv2.erode(src, kernel, iterations)
– src表示原始图像
– kernel表示卷积核
– iterations表示迭代次数,默认值为1,表示进行一次腐蚀操作
可以采用函数numpy.ones((5,5), numpy.uint8)创建5×5的卷积核,如下:
图像腐蚀操作的代码如下所示:
# -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np #读取图片 src = cv2.imread('test01.jpg', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像腐蚀处理 erosion = cv2.erode(src, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", erosion) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如图2所示,左边表示原图,右边是腐蚀处理后的图像,可以发现图像中的干扰细线(噪声)被清洗干净。
如果腐蚀之后的图像仍然存在噪声,可以设置迭代次数进行多次腐蚀操作。比如进行9次腐蚀操作的核心代码如下:
erosion = cv2.erode(src, kernel,iterations=9)
最终经过9次腐蚀处理的输出图像如图3所示。
图像膨胀是腐蚀操作的逆操作,类似于“领域扩张”,它将图像中的高亮区域或白色部分进行扩张,其运行结果比原图的高亮区域更大。
设A,B为集合,∅为空集,A被B的膨胀,记为A⊕B,其中⊕为膨胀算子,膨胀定义为:
该公式表示用B来对图像A进行膨胀处理,其中B是一个卷积模板,其形状可以为正方形或圆形,通过模板B与图像A进行卷积计算,扫描图像中的每一个像素点,用模板元素与二值图像元素做“与”运算,如果都为0,那么目标像素点为0,否则为1。从而计算B覆盖区域的像素点最大值,并用该值替换参考点的像素值实现图像膨胀。图4是将左边的原始图像A膨胀处理为右边的效果图A⊕B。
图像被腐蚀处理后,它将去除噪声,但同时会压缩图像,而图像膨胀操作可以去除噪声并保持原有形状,如图5所示。
在Python中,主要调用OpenCV的dilate()函数实现图像腐蚀。函数原型如下:
dst = cv2.dilate(src, kernel, iterations)
– src表示原始图像
– kernel表示卷积核,可以用numpy.ones()函数构建
– iterations表示迭代次数,默认值为1,表示进行一次膨胀操作
图像膨胀操作的代码如下所示:
# -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np #读取图片 src = cv2.imread('zhiwen.png', cv2.IMREAD_UNCHANGED) #设置卷积核 kernel = np.ones((5,5), np.uint8) #图像膨胀处理 erosion = cv2.dilate(src, kernel) #显示图像 cv2.imshow("src", src) cv2.imshow("result", erosion) #等待显示 cv2.waitKey(0) cv2.destroyAllWindows()
输出结果如图6所示:
本文主要介绍图像形态学处理,详细讲解了图像腐蚀处理和膨胀处理。数学形态学是一种应用于图像处理和模式识别领域的新方法,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别目的。
到此,关于“Python图像腐蚀和膨胀处理怎么实现”的学习就结束了,希望能够解决大家的疑惑,另外大家动手实践也很重要,对大家加深理解和学习很有帮助。如果想要学习更多的相关知识,欢迎关注群英网络资讯站,小编每天都会给大家分享实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理