怎么新建MySQL数据库

发布时间:2022-09-19 作者:admin
阅读:354

在这篇文章中我们来了解一下“Python中用OpenCV如何做霍夫圆变换”,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!


这篇博客将学习如何使用霍夫圆变换在图像中找到圆圈,OpenCV使用cv2.HoughCircles()实现霍夫圆变换。

circles = cv2.HoughCircles(img,
cv2.HOUGH_GRADIENT, 1, 20,
param1=50, param2=40, minRadius=25, maxRadius=0)

img: 待检测的灰度图cv2.HOUGH_GRADIENT:检测的方法,霍夫梯度1:检测的圆与原始图像具有相同的大小,dp=2,检测的圆是原始图像的一半20:检测到的相邻圆的中心的最小距离(如果参数太小,除了一个真实的圆外,还可能会错误地检测到多个相邻圆。如果太大,可能会漏掉一些圆。)param1:在#HOUGHŠu梯度的情况下,它是较高的. 两个阈值传递到Canny边缘检测器(较低的一个小两倍)。param2:在#HOUGHŠu梯度的情况下,它是检测阶段圆心的累加器阈值。它越小,就越可能检测到假圆;minRadius:最小圆半径maxRadius:最大圆半径,如果<=0,则使用最大图像尺寸。如果<0,则返回没有找到半径的中心。

1. 效果图

原始图 VS 检测圆效果图如下:

如下右图可以看到3个外侧圆绿色,圆心红色被成功检测到;

圆的最小半径设置由25调整为10,也可能会错误的检测到圆,效果图如下:

检测圆半径的阈值(param2设置35)的结果,最小圆半径设置10,也可能会错误的检测到圆,效果图如下:

2. 源码

# 霍夫圆检测

import cv2
import numpy as np

cimg = cv2.imread('opencv_logo_350.jpg')
cv2.imshow("origin", cimg)
cv2.waitKey(0)
img = cv2.cvtColor(cimg,cv2.COLOR_BGR2GRAY)
img = cv2.medianBlur(img, 5)
cimg = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

# - img: 待检测的灰度图
# - cv2.HOUGH_GRADIENT:检测的方法,霍夫梯度
# - 1:检测的圆与原始图像具有相同的大小,dp=2,检测的圆是原始图像的一半
# - 20:检测到的圆的中心的最小距离(如果参数为太小,除了一个真实的圆外,还可能会错误地检测到多个相邻圆。如果太大,可能会漏掉一些圆。)
# - param1:在#HOUGHŠu梯度的情况下,它是较高的. 两个阈值传递到Canny边缘检测器(较低的一个小两倍)。
# - param2:在#HOUGHŠu梯度的情况下,它是检测阶段圆心的累加器阈值。它越小,就越可能检测到假圆;
# - minRadius:最小圆半径,也可能会检测到假圆
# - maxRadius:最大圆半径,如果<=0,则使用最大图像尺寸。如果<0,则返回没有找到半径的中心。
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20,
                           param1=50, param2=40, minRadius=0, maxRadius=0)
# 最小圆半径设置不合适,也可能会检测到假圆
# circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20,
#                            param1=50, param2=40, minRadius=0, maxRadius=0)
# circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 20,
#                            param1=50, param2=30, minRadius=10, maxRadius=0)

circles = np.uint16(np.around(circles))

print(len(circles))
print(circles)
for i in circles[0, :]:
    # 绘制外圈圆(蓝色)
    cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2)

    # 绘制圆心(红色)
    cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3)

cv2.imshow('detected circles', cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

参考

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.html#hough-circles


以上就是关于“Python中用OpenCV如何做霍夫圆变换”的介绍了,感谢各位的阅读,希望这篇文章能帮助大家解决问题。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145