怎么新建MySQL数据库

发布时间:2022-09-19 作者:admin
阅读:299
这篇文章将为大家详细讲解有关“用Python怎样实现对目标区域图片裁剪的功能”的知识,下文有详细的介绍,小编觉得挺实用的,对大家学习或工作或许有帮助,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。



这个任务是自己在项目中数据处理的一部分内容,待处理的图片如下所示:

我需要将目标区域给裁剪出来,要不然在后期训练网络的时候整幅图像过大,且目标区域过小,得到结果不好,还会加剧计算量。在网上找了各个大佬的博客看,没找到合适的,便自己动手写了,顺便自己的小破站刚搭建起来,记录一下自己的思路。

思路

去寻找目标区域的最左边,最右边,最上面和最下面的像素点,取到坐标信息以后用CV2的裁剪一下就可以实现了。
#难点
数据总共是11952张图片,每张图片是1024*768大小的,依次去遍历的话担心太费时间了,结果还好,图像中黑色的像素点值为0,计算量比想象的要小很多
#代码

import cv2

"""
    使用OpenCV截取图片
"""
def search(path):
    left = 1024
    right = 0
    upper = 768
    lower = 0
    img = cv2.imread(path)[:,:,0]
    # print(img.shape)
    for i in range(768):
        for j in range(1024):
            if img[i,j] != 0 :
                # print(img[i,j])
                left = min(j,left)
                right = max(j,right)
                lower = max(i,lower)
                upper =  min(i,upper)
    return (left,upper,right,lower)

def image_cut_save(path, left, upper, right, lower, save_path):
    """
        所截区域图片保存
    :param path: 图片路径
    :param left: 区块左上角位置的像素点离图片左边界的距离
    :param upper:区块左上角位置的像素点离图片上边界的距离
    :param right:区块右下角位置的像素点离图片左边界的距离
    :param lower:区块右下角位置的像素点离图片上边界的距离
     故需满足:lower > upper、right > left
    :param save_path: 所截图片保存位置
    """
    img = cv2.imread(path)  # 打开图像
    cropped = img[upper:lower, left:right]
    # 保存截取的图片
    cv2.imwrite(save_path, cropped)


if __name__ == '__main__':
    root_path = r'原图片的路径'
    save_path = r'裁剪后的图片保存的路径'
    images = os.listdir(root_path)
    for image in images:
        # print(image)
        pic_path = os.path.join(root_path,image)
        # print(pic_path)
        pic_save_dir_path = os.path.join(save_path,image)
        print(pic_save_dir_path)
        left, upper, right, lower = search(pic_path)
        # show_cut(pic_path, left, upper, right, lower)
        image_cut_save(pic_path, left, upper, right, lower, pic_save_dir_path)

结果

裁剪后的图像如下


关于“用Python怎样实现对目标区域图片裁剪的功能”的内容今天就到这,感谢各位的阅读,大家可以动手实际看看,对大家加深理解更有帮助哦。如果想了解更多相关内容的文章,关注我们,群英网络小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145