在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下
其中错误为:TypeError: tuple indices must be integers, not list
再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense #Каталог с данными для обучения train_dir = 'train' # Каталог с данными для проверки val_dir = 'val' # Каталог с данными для тестирования test_dir = 'val' # Размеры изображения img_width, img_height = 800, 800 # Размерность тензора на основе изображения для входных данных в нейронную сеть # backend Tensorflow, channels_last input_shape = (img_width, img_height, 3) # Количество эпох epochs = 1 # Размер мини-выборки batch_size = 4 # Количество изображений для обучения nb_train_samples = 300 # Количество изображений для проверки nb_validation_samples = 25 # Количество изображений для тестирования nb_test_samples = 25 model = Sequential() model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape)) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Conv2D(64, (5, 5), padding="same")) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(10, 10))) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer="Nadam", metrics=['accuracy']) print(model.summary()) datagen = ImageDataGenerator(rescale=1. / 255) train_generator = datagen.flow_from_directory( train_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') val_generator = datagen.flow_from_directory( val_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') test_generator = datagen.flow_from_directory( test_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') model.fit_generator( train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=nb_validation_samples // batch_size) print('Сохраняем сеть') model.save("grib.h5") print("Сохранение завершено!")
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense from keras.models import load_model print("Загрузка сети") model = load_model("grib.h5") print("Загрузка завершена!")
/usr/bin/python3.5 /home/disk2/py/neroset/do.py
/home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Загрузка сети
Traceback (most recent call last):
File "/home/disk2/py/neroset/do.py", line 13, in <module>
model = load_model("grib.h5")
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
return layer_module.deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
model.add(layer)
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
output_tensor = layer(self.outputs[0])
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
self.build(input_shapes[0])
File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
dim = input_shape[self.axis]
TypeError: tuple indices must be integers or slices, not list
Process finished with exit code 1
убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)
强调文本 强调文本
keras.preprocessing.image import ImageDataGenerator keras.models import Sequential keras.layers import Conv2D, MaxPooling2D, BatchNormalization keras.layers import Activation, Dropout, Flatten, Dense
##完美解决
##附上原文链接
https://qa-help.ru/questions/keras-batchnormalization
补充:keras和tensorflow模型同时读取要慎重
项目中,先读取了一个keras模型获取模型输入size,再加载keras转tensorflow后的pb模型进行预测。
Attempting to use uninitialized value batch_normalization_14/moving_mean
逛论坛,有建议加上初始化:
sess.run(tf.global_variables_initializer())
但是这样的话,会导致模型参数全部变成初始化数据。无法使用预测模型参数。
最后发现,将keras模型的加载去掉即可。
import cv2 import numpy as np from keras.models import load_model from utils.datasets import get_labels from utils.preprocessor import preprocess_input import time import os import tensorflow as tf from tensorflow.python.platform import gfile os.environ["CUDA_VISIBLE_DEVICES"] = "-1" emotion_labels = get_labels('fer2013') emotion_target_size = (64,64) #emotion_model_path = './models/emotion_model.hdf5' #emotion_classifier = load_model(emotion_model_path) #emotion_target_size = emotion_classifier.input_shape[1:3] path = '/mnt/nas/cv_data/emotion/test' filelist = os.listdir(path) total_num = len(filelist) timeall = 0 n = 0 sess = tf.Session() #sess.run(tf.global_variables_initializer()) with gfile.FastGFile("./trans_model/emotion_mode.pb", 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name='') pred = sess.graph.get_tensor_by_name("predictions/Softmax:0") ######################img########################## for item in filelist: if (item == '.DS_Store') | (item == 'Thumbs.db'): continue src = os.path.join(os.path.abspath(path), item) bgr_image = cv2.imread(src) gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY) gray_face = gray_image try: gray_face = cv2.resize(gray_face, (emotion_target_size)) except: continue gray_face = preprocess_input(gray_face, True) gray_face = np.expand_dims(gray_face, 0) gray_face = np.expand_dims(gray_face, -1) input = sess.graph.get_tensor_by_name('input_1:0') res = sess.run(pred, {input: gray_face}) print("src:", src) emotion_probability = np.max(res[0]) emotion_label_arg = np.argmax(res[0]) emotion_text = emotion_labels[emotion_label_arg] print("predict:", res[0], ",prob:", emotion_probability, ",label:", emotion_label_arg, ",text:",emotion_text)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理