怎么新建MySQL数据库

发布时间:2022-07-04 作者:admin
阅读:627
这篇文章主要讲解了“用Python如何爬取疫情数据,并进行数据可视化操作”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“用Python如何爬取疫情数据,并进行数据可视化操作”吧!


知识点
  1. 爬虫基本流程
  2. json
  3. requests 爬虫当中 发送网络请求
  4. pandas 表格处理 / 保存数据
  5. pyecharts 可视化

开发环境

python 3.8 比较稳定版本 解释器发行版 anaconda jupyter notebook 里面写数据分析代码 专业性

pycharm 专业代码编辑器 按照年份与月份划分版本的

爬虫完整代码

导入模块

import requests      # 发送网络请求模块
import json
import pprint        # 格式化输出模块
import pandas as pd  # 数据分析当中一个非常重要的模块

分析网站

先找到今天要爬取的目标数据

https://news.qq.com/zt2020/page/feiyan.htm#/

找到数据所在url

发送请求

url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5&_=1638361138568'
response = requests.get(url, verify=False)

获取数据

json_data = response.json()['data']

解析数据

json_data = json.loads(json_data)
china_data = json_data['areaTree'][0]['children'] # 列表
data_set = []
for i in china_data:
    data_dict = {}
    # 地区名称
    data_dict['province'] = i['name']
    # 新增确认
    data_dict['nowConfirm'] = i['total']['nowConfirm']
    # 死亡人数
    data_dict['dead'] = i['total']['dead']
    # 治愈人数
    data_dict['heal'] = i['total']['heal']
    # 死亡率
    data_dict['deadRate'] = i['total']['deadRate']
    # 治愈率
    data_dict['healRate'] = i['total']['healRate']
    data_set.append(data_dict)

保存数据

df = pd.DataFrame(data_set)
df.to_csv('data.csv')

数据可视化

导入模块

from pyecharts import options as opts
from pyecharts.charts import Bar,Line,Pie,Map,Grid

读取数据

df2 = df.sort_values(by=['nowConfirm'],ascending=False)[:9]
df2

死亡率与治愈率

line = (
    Line()
    .add_xaxis(list(df['province'].values))
    .add_yaxis("治愈率", df['healRate'].values.tolist())
    .add_yaxis("死亡率", df['deadRate'].values.tolist())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="死亡率与治愈率"),

    )
)
line.render_notebook()

 

各地区确诊人数与死亡人数情况

bar = (
    Bar()
    .add_xaxis(list(df['province'].values)[:6])
    .add_yaxis("死亡", df['dead'].values.tolist()[:6])
    .add_yaxis("治愈", df['heal'].values.tolist()[:6])
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各地区确诊人数与死亡人数情况"),
        datazoom_opts=[opts.DataZoomOpts()],
        )
)
bar.render_notebook()


“用Python如何爬取疫情数据,并进行数据可视化操作”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145