怎么新建MySQL数据库

发布时间:2022-05-23 作者:admin
阅读:416
这篇文章主要介绍了Python小波变换去噪的原理怎么理解相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python小波变换去噪的原理怎么理解文章都会有所收获,下面我们一起来看看吧。

一.小波去噪的原理

信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。
小波阀值去噪的基本问题包括三个方面:小波基的选择,阀值的选择,阀值函数的选择。

(1) 小波基的选择:通常我们希望所选取的小波满足以下条件:正交性、高消失矩、紧支性、对称性或反对称性。但事实上具有上述性质的小波是不可能存在的,因为小波是对称或反对称的只有Haar小波,并且高消失矩与紧支性是一对矛盾,所以在应用的时候一般选取具有紧支的小波以及根据信号的特征来选取较为合适的小波。
(2) 阀值的选择:直接影响去噪效果的一个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。目前主要有通用阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。
(3) 阀值函数的选择:阀值函数是修正小波系数的规则,不同的反之函数体现了不同的处理小波系数的策略。最常用的阀值函数有两种:一种是硬阀值函数,另一种是软阀值函数。还有一种介于软、硬阀值函数之间的Garrote函数。

另外,对于去噪效果好坏的评价,常用信号的信噪比(SNR)与估计信号同原始信号的均方根误差(RMSE)来判断。

二,在python中使用小波分析进行阈值去噪声,使用pywt.threshold函数

#coding=gbk
#使用小波分析进行阈值去噪声,使用pywt.threshold
 
import pywt
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt 
import math 
 
data = np.linspace(1, 10, 10)
print(data)
# [ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]
# pywt.threshold(data, value, mode, substitute) mode 模式有4种,soft, hard, greater, less; substitute是替换值可以点进函数里看,data/np.abs(data) * np.maximum(np.abs(data) - value, 0)
 
data_soft = pywt.threshold(data=data, value=6, mode='soft', substitute=12)
print(data_soft)
# [12. 12. 12. 12. 12.  0.  1.  2.  3.  4.] 将小于6 的值设置为12, 大于等于6 的值全部减去6
 
data_hard = pywt.threshold(data=data, value=6, mode='hard', substitute=12)
print(data_hard)
# [12. 12. 12. 12. 12.  6.  7.  8.  9. 10.] 将小于6 的值设置为12, 其余的值不变
 
data_greater = pywt.threshold(data, 6, 'greater', 12)
print(data_greater)
# [12. 12. 12. 12. 12.  6.  7.  8.  9. 10.] 将小于6 的值设置为12,大于等于阈值的值不变化
 
data_less = pywt.threshold(data, 6, 'less', 12)
print(data_less)
# [ 1.  2.  3.  4.  5.  6. 12. 12. 12. 12.] 将大于6 的值设置为12, 小于等于阈值的值不变

三,在python中使用ecg心电信号进行小波去噪实验

#-*-coding:utf-8-*-

import matplotlib.pyplot as plt
import pywt
import math
import numpy as np

#get Data
ecg=pywt.data.ecg()  #生成心电信号
index=[]
data=[]
coffs=[]

for i in range(len(ecg)-1):
    X=float(i)
    Y=float(ecg[i])
    index.append(X)
    data.append(Y)
#create wavelet object and define parameters
w=pywt.Wavelet('db8')#选用Daubechies8小波
maxlev=pywt.dwt_max_level(len(data),w.dec_len)
print("maximum level is"+str(maxlev))
threshold=0  #Threshold for filtering

#Decompose into wavelet components,to the level selected:
coffs=pywt.wavedec(data,'db8',level=maxlev) #将信号进行小波分解

for i in range(1,len(coffs)):
    coffs[i]=pywt.threshold(coffs[i],threshold*max(coeffs[i]))

datarec=pywt.waverec(coffs,'db8')#将信号进行小波重构

mintime=0
maxtime=mintime+len(data) 
print(mintime,maxtime)

plt.figure()
plt.subplot(3,1,1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(3, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")
plt.subplot(3, 1, 3)
plt.plot(index[mintime:maxtime],data[mintime:maxtime]-datarec[mintime:maxtime])
plt.xlabel('time (s)')
plt.ylabel('error (uV)')
plt.tight_layout()
plt.show()


到此这篇关于“Python小波变换去噪的原理怎么理解”的文章就介绍到这了,更多相关Python小波变换去噪的原理怎么理解内容,欢迎关注群英网络技术资讯频道,小编将为大家输出更多高质量的实用文章!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145