怎么新建MySQL数据库

发布时间:2021-10-23 作者:admin
阅读:727

    在pandas中,当经常对数据进行处理,可能会造成数据索引顺序混乱,那么也就会影响数据读取、插入等等操作,因此重置索引的操作就很重要,那么pandas中重置索引怎样做?接下来给大家分享几个方法,大家可以参考。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd'])
#得到df:
     a    b    c    d
0    0    1    2    3
1    4    5    6    7
2    8    9    10   11
3    12   13   14   15
4    16   17   18   19

# 对其重排顺序,得到索引顺序倒序的数据
df2 = df.sort_values('a', ascending=False)
# 得到df2:
     a    b     c     d
4    16   17    18    19
3    12   13    14    15
2    8    9     10    11
1    4    5     6     7
0    0    1     2     3

下面对df2重置索引,使其索引从0开始

法一:

简单粗暴:

df2.index = range(len(df2))

# 输出df2:
     a     b     c     d
0    16    17    18    19
1    12    13    14    15
2    8     9     10    11
3    4     5     6     7
4    0     1     2     3

法二:

df2 = df2.reset_index(drop=True)  # drop=True表示删除原索引,不然会在数据表格中新生成一列'index'数据
# 输出df2:
     a     b     c     d
0    16    17    18    19
1    12    13    14    15
2    8     9     10    11
3    4     5     6     7
4    0     1     2     3

法三:

df2 = df2.reindex(labels=range(len(df))  #labels是第一个参数,可以省略
# 输出df2
     a     b     c     d
0    16    17    18    19
1    12    13    14    15
2    8     9     10    11
3    4     5     6     7
4    0     1     2     3

# 注:df = df.reindex(index=[]),在原数据结构上新建行(index是新索引,若新建数据索引在原数据中存在,则引用原有数据),
#默认用NaN填充(使用fill_value=0 来修改填充值自定义,此处我设置的是0)。
# df = df.reindex(columns=[]),在原数据结构上新建列,方法与新建行一样

法四:

df2 = df2.set_index(keys=['a', 'c'])  # 将原数据a, c列的数据作为索引。
# drop=True,默认,是将数据作为索引后,在表格中删除原数据
# append=False,默认,是将新设置的索引设置为内层索引,原索引是外层索引

# 输出df2,注意a,c列是索引:
            b     d
a     c        
16    18    17    19
12    14    13    15
8     10    9     11
4     6     5     7
0     2     1     3

    关于pandas重置索引的方法就介绍到这,上述方法有一定的借鉴价值,需要的朋友可以参考,希望能对大家有帮助,想要了解更多pandas重置索引的内容,大家可以关注其它的相关文章。

文本转载自脚本之家

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145