python的jieba库干什么的?一些刚接触Python的朋友可能对jieba库不是很了解,因此这篇文章就给大家来介绍一下,jieba库的作用、jieba库的安装以及jieba库的使用,感兴趣的朋友就继续往下看吧。
jieba
库是一款优秀的 Python 第三方中文分词库,jieba
支持三种分词模式:精确模式、全模式和搜索引擎模式,下面是三种模式的特点。
精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析
全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据
搜索引擎模式:在精确模式的基础上,对长词再次进行切分
因为 jieba
是一个第三方库,所有需要我们在本地进行安装。
Windows 下使用命令安装:在联网状态下,在命令行下输入 pip install jieba
进行安装,安装完成后会提示安装成功
在 pyCharm 中安装:打开 settings
,搜索 Project Interpreter
,在右边的窗口选择 +
号,点击后在搜索框搜索 jieba
,点击安装即可
# -*- coding: utf-8 -*- import jieba seg_str = "好好学习,天天向上。" print("/".join(jieba.lcut(seg_str))) # 精简模式,返回一个列表类型的结果 print("/".join(jieba.lcut(seg_str, cut_all=True))) # 全模式,使用 'cut_all=True' 指定 print("/".join(jieba.lcut_for_search(seg_str))) # 搜索引擎模式
分词效果:
需求:使用 jieba
分词对一个文本进行分词,统计次数出现最多的词语,这里以三国演义为例
# -*- coding: utf-8 -*- import jieba txt = open("三国演义.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) # 使用精确模式对文本进行分词 counts = {} # 通过键值对的形式存储词语及其出现的次数 for word in words: if len(word) == 1: # 单个词语不计算在内 continue else: counts[word] = counts.get(word, 0) + 1 # 遍历所有词语,每出现一次其对应的值加 1 items = list(counts.items()) items.sort(key=lambda x: x[1], reverse=True) # 根据词语出现的次数进行从大到小排序 for i in range(3): word, count = items[i] print("{0:<5}{1:>5}".format(word, count))
统计结果:
你可以随便找一个文本文档,也可以到 https://github.com/coderjas/python-quick 下载上面例子中的文档。
上面的例子统计实现了中文文档中出现最多的词语,接着我们就来统计一下一个英文文档中出现次数最多的单词。原理同上
# -*- coding: utf-8 -*- def get_text(): txt = open("1.txt", "r", encoding='UTF-8').read() txt = txt.lower() for ch in '!"#$%&()*+,-./:;<=>?@[\\]^_‘{|}~': txt = txt.replace(ch, " ") # 将文本中特殊字符替换为空格 return txt file_txt = get_text() words = file_txt.split() # 对字符串进行分割,获得单词列表 counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word, 0) + 1 items = list(counts.items()) items.sort(key=lambda x: x[1], reverse=True) for i in range(5): word, count = items[i] print("{0:<5}->{1:>5}".format(word, count))
统计结果:
现在大家对python的jieba库干什么的应该都了解了吧,上述示例具有一定的借鉴价值,有需要的朋友可以参考学习,希望对大家学习python有帮助,想要了解python的库的使用,大家可以继续浏览群英网络其他相关的文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理