torch.save(model,path)
torch.load(path)
登录后复制
torch.save(model.state_dict(),path)
model_state_dic = torch.load(path)
model.load_state_dic(model_state_dic)
登录后复制
模型保存的时候会把模型结构定义文件路径记录下来,加载的时候就会根据路径解析它然后装载参数;当把模型定义文件路径修改以后,使用torch.load(path)就会报错。
把model文件夹修改为models后,再加载就会报错。
import torch
from model.TextRNN import TextRNN
load_model = torch.load('experiment_model_save/textRNN.bin')
print('load_model',load_model)
登录后复制
这种保存完整模型结构和参数的方式,一定不要改动模型定义文件路径。
在多卡机器上有多张显卡0号开始,现在模型在n>=1上的显卡训练保存后,拷贝在单卡机器上加载
import torch
from model.TextRNN import TextRNN
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin')
print('load_model',load_model)
登录后复制
会出现cuda device不匹配的问题——你保存的模代码段 小部件型是使用的cuda1,那么采用torch.load()打开的时候,会默认的去寻找cuda1,然后把模型加载到该设备上。这个时候可以直接使用map_location来解决,把模型加载到CPU上即可。
load_model = torch.load('experiment_model_save/textRNN_cuda_1.bin',map_location=torch.device('cpu'))
登录后复制
当用多GPU同时训练模型之后,不管是采用模型结构和参数一起保存还是单独保存模型参数,然后在单卡下加载都会出现问题
a、模型结构和参数一起保然后在加载
torch.distributed.init_process_group(backend='nccl')
登录后复制
模型训练的时候采用上述多进程的方式,所以你在加载的时候也要声明,不然就会报错。
b、单独保存模型参数
model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
state_dict = torch.load('train_model/clip/experiment.pt')
model.load_state_dict(state_dict)
登录后复制
同样会出现问题,不过这里出现的问题是参数字典的key和模型定义的key不一样
原因是多GPU训练下,使用分布式训练的时候会给模型进行一个包装,代码如下:
model = torch.load('train_model/clip/Vtransformers_bert_6_layers_encoder_clip.bin')
print(model)
model.cuda(args.local_rank)
。。。。。。
model = nn.parallel.DistributedDataParallel(model,device_ids=[args.local_rank],find_unused_parameters=True)
print('model',model)
登录后复制
包装前的模型结构:
包装后的模型
在外层多了DistributedDataParallel以及module,所以才会导致在单卡环境下加载模型权重的时候出现权重的keys不一致。
if gpu_count > 1:
torch.save(model.module.state_dict(),save_path)
else:
torch.save(model.state_dict(),save_path)
model = Transformer(num_encoder_layers=6,num_decoder_layers=6)
state_dict = torch.load(save_path)
model.load_state_dict(state_dict)
登录后复制
这样就是比较好的范式,加载不会出错。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理