group做的聚合有些复杂。先选定分组所依据的键,此后MongoDB就会将集合依据选定键值的不同分成若干组。然后可以通过聚合每一组内的文档,产生一个结果文档。
和数据库一样group常常用于统计。MongoDB的group还有很多限制,如:返回结果集不能超过16M, group操作不会处理超过10000个唯一键,好像还不能利用索引[不很确定]。
Group大约需要一下几个参数。
1.key:用来分组文档的字段。和keyf两者必须有一个
2.keyf:可以接受一个javascript函数。用来动态的确定分组文档的字段。和key两者必须有一个
3.initial:reduce中使用变量的初始化
4.reduce:执行的reduce函数。函数需要返回值。
5.cond:执行过滤的条件。
6.finallize:在reduce执行完成,结果集返回之前对结果集最终执行的函数。可选的。
下面介绍一个实例:
先插入测试数据:
for(var i=1; i
1.普通分组查询
db.test.group({ key:{age:true}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++ } }); db.runCommand({group: { ns:"test", key:{age:true}, initial:{num:0}, $reduce:function(doc,prev) { prev.num++ } } });
2.筛选后再分组
db.test.group({ key:{age:true}, initial:{num:0}, $reduce:function(doc,prev) { prev.num++ }, condition:{age:{$gt:2}} }); db.runCommand({group: { ns:"test", key:{age:true}, initial:{num:0}, $reduce:function(doc,prev) { prev.num++}, condition:{age:{$gt:2}} } });
3、普通的$where查询:
db.test.find({$where:function(){ return this.age>2; } });
group联合$where查询
db.test.group({ key:{age:true}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++ }, condition:{$where:function(){ return this.age>2; } } });
4、使用函数返回值分组
//注意,$keyf指定的函数一定要返回一个对象 db.test.group({ $keyf:function(doc){return {age:doc.age};}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++ } }); db.runCommand({group: { ns:"test", $keyf:function(doc){return {age:doc.age};}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++} } });
5.使用终结器
db.test.group({ $keyf:function(doc){return {age:doc.age};}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++ }, finalize: function(doc){ doc.count=doc.num;delete doc.num; } }); db.runCommand({group: { ns:"test", $keyf:function(doc){return {age:doc.age};}, initial:{num:0}, $reduce:function(doc,prev){ prev.num++}, finalize: function(doc){ doc.count=doc.num;delete doc.num; } } });
有关MapReduce
//首先插入测试数据 for(var i=1;i
注意:
1.mapreduce是根据map函数里调用的emit函数的第一个参数来进行分组的
2.仅当根据分组键分组后一个键匹配多个文档,才会将key和文档集合交由reduce函数处理。例如:
db.runCommand( { mapreduce:'test', map:function(){emit(this.name.substr(0,3),this);}, reduce:function(key,vals){return 'wq';}, out:'wq' });
执行mapreduce命令后,再查看wq表数据:
db.wq.find() { "_id" : "mm1", "value" : "wq" } { "_id" : "mm2", "value" : "wq" } { "_id" : "mm3", "value" : { "_id" : 3, "name" : "mm3" } } { "_id" : "mm4", "value" : { "_id" : 4, "name" : "mm4" } } { "_id" : "mm5", "value" : { "_id" : 5, "name" : "mm5" } } { "_id" : "mm6", "value" : { "_id" : 6, "name" : "mm6" } } { "_id" : "mm7", "value" : { "_id" : 7, "name" : "mm7" } } { "_id" : "mm8", "value" : { "_id" : 8, "name" : "mm8" } } { "_id" : "mm9", "value" : { "_id" : 9, "name" : "mm9" } }
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理