递归函数是直接调用自己或通过一系列语句间接调用自己的函数。递归在程序设计有着举足轻重的作用,在很多情况下,借助递归可以优雅的解决问题。虽然使用递归可以快速的解决一些难题,但由于递归的抽象性,使递归难以掌握。为了更好的理解递归函数背后的思想,本节主要通过可视化方式来了解递归函数的执行步骤。
通过本节学习,应掌握以下内容:
提高对递归的理解
利用可视化理解递归函数背后的思想
虽然使用递归可以快速的解决一些难题,但由于递归的抽象性,使得递归难以掌握。虽然已经在《递归基础》中讲解了递归的示例,并且简单的了解了递归的调用过程,但缺乏具体的认知。本节将对递归的调用进行更加深入的讲解。
递归函数执行时,每次递归调用都会在内存中创建新的函数副本,一旦函数调用结束,则返回一些数据,并将此副本就会从内存中删除。通常,递归方法得到的解决方案看起来十分简洁简单,但理解并跟踪函数的执行却较为复杂。为了更好地理解,考虑以下求取斐波那契数列的简单示例:
def fibo(n): if n == 0: return 1 else: return n * fibo(n - 1) def main(): number = 4 result = fibo(number) print(result) if __name__ == "__main__": main()
当程序运行到第 10 行时。第一次调用 fibo() 函数,会为 fibo() 函数调用创建一条新的活动记录,此时在运行时栈上具有 3 条活动记录。然后 Python 解释器跳转到第 2 行,其中 n 指向数字 4,如下图所示。n 不等于 0,因此跳转到第 5 行,其中包含一个对 fibo() 的函数调用,这将在运行时堆栈上创建另一个活动记录。重复上述过程,直到 n=0。
需要注意的是,每个递归函数调用都有一个变量 n 的副本。活动记录保存函数范围内的所有局部变量和参数。每次调用函数时,都会创建一个新的活动记录,并将局部变量的新副本存储在活动记录中,程序运行过程的调用顺序如下图所示:
当函数执行到 n=0 时,fibo() 函数返回了它的第一个值,它将 1 返回到上一个函数调用。如下图所示,从运行时堆栈中弹出 n=0 时函数调用的活动记录(通过将图中活动记录的变为灰色来表示)。当函数返回时,活动记录的空间被回收以供以后使用。堆上的阴影对象 0 也被垃圾收集器回收,因为不再有指向它的引用。
在第一次 fibo() 函数返回之后,Python 解释器返回到前一个函数调用中的第 5 行,这个语句也包含一个 return 语句,所以函数再次返回到第 5 行,返回值为 1。同样,函数再次返回,但这次的值为 2。按照上述过程,直到 fibo() 函数返回到 main() 函数的第 8 行,整个过程如下图所示:
最后,程序打印执行结果,在第 9 行之后从 main() 函数返回,在第 11 行后从 module 返回并终止。从以上示例可以看出,对 fibo() 函数的每次递归调用都会创建自己的变量副本。每次调用该函数时,都会将局部变量和参数复制到相应的活动记录中。当函数调用返回时,相应的活动记录会从运行时堆栈中弹出。这就是递归函数的执行方式。
本节将利用 turtle 库递归的绘制图案,提高对递归过程的认识。
turtle 库属于是python的标准库,通常用于绘制图案,可以使用该库创建一只小乌龟 (turtle) 在画布上移动,当小乌龟爬行时会在画布上绘制线条,而当前尾巴抬起时,并不会进行绘制。
接下来,我们将介绍一些基本的 turtle 绘图函数:
首先通过创建一个简单的递归函数 draw() 来了解 turtle 库,这个递归函数的基本情况为——要画的线长 distance 降为 0;若线长大于 0,就让小乌龟小乌龟向前绘制 distance 个单位距离,然后左转 30 度;递归情况为——缩短后的距离再次调用 draw() 函数。
# 导入 turtle 库 import turtle # 创建小乌龟对象 my_turtle = turtle.Turtle() # 创建用户绘制图案的窗口 window = my_turtle.getscreen() def draw(turtle, distance): if distance > 0: # 小乌龟向前绘制 distance 个单位距离 turtle.forward(distance) # 然后左转 30 度 turtle.left(30) draw(turtle, distance-6) draw(my_turtle, 200) window.exitonclick()
接下来,我们使用 turtle 模块绘制分形树。分形树和递归有许多的共同点,是数学中的一个概念,无论放大多少倍观察分形图,总能看到相同的基本形状。
如果我们定义树为包含向左生长的子树和向右生长的子树的话,就可以根据递归的思想得到分形树:
import turtle def tree(branch, turtle): if branch > 5: turtle.forward(branch) turtle.right(20) tree(branch-15, turtle) turtle.left(40) tree(branch-10, turtle) turtle.right(20) turtle.backward(branch) my_turtle = turtle.Turtle() window = my_turtle.getscreen() my_turtle.left(90) my_turtle.up() my_turtle.backward(300) my_turtle.down() tree(110, my_turtle) window.exitonclick()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理