怎么新建MySQL数据库

发布时间:2022-11-02 作者:admin
阅读:401
在实际应用中,我们有时候会遇到“python数组变形怎么实现,都有多少方法”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“python数组变形怎么实现,都有多少方法”文章能帮助大家解决问题。


1.reshape

reshape是重塑,常用的三种写法如下:

numpy.arange(n).reshape(a, b)    
# 依次生成 n个自然数,并且以 a行 b列的数组形式显示
numpy.arange(a,b,c)    
# 从数字 a起, 步长为 c, 到 b结束,生成 array
numpy.arange(a,b,c).reshape(m,n) 
# 将array的维度变为 m 行 n 列。

例一:

import numpy as np
arr=np.arange(1,25.0).reshape(4,6)

关于order:
order可以是数组排序的方向不同
(1)order='F'列为主序
(2)order='C'行为主序

一种是以order='F'的方式让数组竖着排序:

arr=np.arange(1,25.0).reshape((6,-1),order='F')

一种是以order='C'的方式让数组横着排序:

arr=np.arange(1,25.0).reshape((6,-1),order='C')

reshapeflattern:
前者完成的是从低维到高维的转换,后者则相反,还可以使用reval函数

2.flatten

numpy.ndarray.flattern()是用来返回一维数组的函数。
也可以像reshape一样使用order

arr2=arr.flatten(order='F')

一般默认是使用order='C',有特定需求则使用order='F'

flatten()返回的是拷贝,意味着改变元素的值不会影响原始数组。

3.ravel

ravel()方法将数组维度拉成一维数组

ravelflatten的区别:

  • ravel在进行扁平化处理的时候没有复制原来的数组,只在列主序打平时复制原来的数组
  • flatten在所有情况下打平时都复制了原来的数组
  • ravel()返回的是视图,意味着改变元素的值会影响原始数组;
  • flatten()返回的是拷贝,意味着改变元素的值不会影响原始数组。
  • 相同点:这两个函数的功能都是将多维数组转换成一维

ravel()返回的是视图,意味着改变元素的值会影响原始数组;

4.stack

numpy.stack(arrays, axis=0):沿着新轴连接数组的序列。

一系列的stack函数有:stack(),hstack(),vstack()

(1)concatenate

还有属性例如:concatenate
numpy.concatenate((a1,a2,…), axis=0)函数,能够一次完成多个数组的拼接。其中a1,a2,…是数组类型的参数

arr1=['穿过寒冬拥抱你','反贪风暴5:最终章','李茂扮太子','误杀2']
arr2=['以年为单位的恋爱','爱情神话','黑客帝国:矩阵重启','雄狮少年']
np.concatenate([arr1,arr2])

注意,两个list合并的时候需要用到 [ ] ,否则出错。

axis参数指定新轴在结果尺寸中的索引。例如,如果axis=0,它将是第一个维度,如果axis=-1,它将是最后一个维度。

默认情况下axis=0

arr1=np.arange(1,25.0).reshape(4,6)
arr2=np.arange(26,50.0).reshape(4,6)
np.concatenate([arr1,arr2],axis=1)
np.concatenate([arr1,arr2],axis=0)

如上图所示,axis=1是将不同的列串联起来,axis=0则类似于append,是合并。

arr1arr2进行对调:

(2)vstack

函数原型:vstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它是垂直(按照行顺序)的把数组给堆叠起来。

vstack 和concatenate( ),axis=0等价

(3)dstack

dstack是deep stack,即在深度方向进行合并。

dstack可以将一维数组变成三维数组。

import numpy as np

# vstack
np.vstack([arr1,arr2])
#结果:
array([[ 1.,  2.,  3.,  4.,  5.,  6.],
       [ 7.,  8.,  9., 10., 11., 12.],
       [13., 14., 15., 16., 17., 18.],
       [19., 20., 21., 22., 23., 24.],
       [26., 27., 28., 29., 30., 31.],
       [32., 33., 34., 35., 36., 37.],
       [38., 39., 40., 41., 42., 43.],
       [44., 45., 46., 47., 48., 49.]])
       
# dstack
np.dstack([arr1,arr2])
# 结果:
array([[[ 1., 26.],
        [ 2., 27.],
        [ 3., 28.],
        [ 4., 29.],
        [ 5., 30.],
        [ 6., 31.]],

       [[ 7., 32.],
        [ 8., 33.],
        [ 9., 34.],
        [10., 35.],
        [11., 36.],
        [12., 37.]],

       [[13., 38.],
        [14., 39.],
        [15., 40.],
        [16., 41.],
        [17., 42.],
        [18., 43.]],

       [[19., 44.],
        [20., 45.],
        [21., 46.],
        [22., 47.],
        [23., 48.],
        [24., 49.]]])

(4)hstack

函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组,水平(按列顺序)把数组给堆叠起来,vstack()函数正好和它相反。

(5)r,c模式

np.r_[arr1,arr2] ,实际上是vstack 与 axis=0 做了一个合并(concatenate)。
np.c_[arr1,arr2] , hstack 与 axis=1 做了一个合并(concatenate)。

print(np.r_[-2:2:1,[0]*3,5,6])

上面那段代码由三部分组成,-2:2:1表示从-2~2的数字,间隔为1,并且2没有,然后是3个0,接下来是5和6

print((np.r_['r',-2:2:1,[0]*3,5,6])) #二维数组,以行的方式呈现
print((np.r_['c',-2:2:1,[0]*3,5,6])) #二维数组,以列的方式呈现

默认是为r,表示沿着行的方向创建,c则表示以列的方式创建。

注:shape表示矩阵的维度大小。

也可以用'a,b,c'来进行表示,a代表轴,沿着轴a来进行合并,代表合并后数组维度至少是bc是代表在第c维度上做维度提升

print(np.r_['0,2,0',[1,2,3],[4,5,6]],'\n')
print(np.r_['0,2,1',[1,2,3],[4,5,6]],'\n')
print(np.r_['1,2,0',[1,2,3],[4,5,6]],'\n')
print(np.r_['1,2,1',[1,2,3],[4,5,6]])

 b:合并后数组的维度
 a=0,沿着轴0合并。(3,)-->(1,3)
 a=1,沿着轴1合并。(3,1)-->(3,2)
 c=0,在轴0上上升一维,(3,)-->(3,1)
 c=1,在轴1上上升一维,(3,)-->(1,3)

5.split

(1)split

split 具体有 split() , hsplit() , vsplit()

arr1=np.arange(1,13.0).reshape(2,6)
arr2=np.arange(14,26.0).reshape(2,6)
arr=np.concatenate([arr1,arr2])
arr3=np.split(arr,2)   # 默认情况下是 axis=0

由上图可知,split分割成为二维数组

arr4=np.split(arr,3,axis=1)
print(arr4[0].shape)
arr4

arr5=np.split(arr,4,axis=0)
arr6=np.split(arr,[1,2,3],axis=0)

上述代码块的两行表示是相同的,第二行相当于使用数组的切片方式进行处理。

(2)vsplit和hsplit

  • vsplit 垂直(按行)将阵列拆分为多个子阵列。
  • hsplit 水平(按列)将阵列拆分为多个子阵列。

这部分希望大家看下图体会~

arrv=np.vsplit(arr,[1,2,3,4])
arrh=np.hsplit(arr,[1,2,3,4,5])

6.repeat

repeat(): 复制数组中的每个指定元素。
一维数组:用整数型和列表型参考来控制元素被复制的个数
多维数组:用整数型和列表型来控制元素被复制的个数

import numpy as np
arr=np.arange(3)
print(arr.shape)

(1)标量参数

print(arr.repeat(3))   # 每个元素复制三次

(2)列表参数

print(arr)
print(arr.repeat([1,2,3]))  
# 第一个没有复制,第二个复制了两个,,依次类推

当列表的元素少于数组元素,或者多余数组元素,都会报错,就如下图所示。

上面是一维数组的,接下来再看看二维数组中利用标量参数和轴参数:

print(arr.repeat(2)) # 此时二维数组变成一维的了
print(arr.repeat(2,1)) 
print(arr.repeat(2,axis=0)) # 在行上面进行复制

再来看看二维数组中的列表参数和轴参数:

7.tile

关于repeat和title,二者的本质都是复制,而repeat是在元素层面进行赋值,title是在数组层面进行赋值。

(1)标量参数

print(np.tile(arr,2))
print(np.repeat(arr,2))

(2)元组参数

元组参数即括号里面用相关参数进行分割。

print(np.tile(arr,(2,3)))

print(np.tile(arr,(2,3,4)))

在轴0上面复制两遍,复制3遍,复制4遍。

8.sort

排序分为:

  • 直接排序
  • 间接排序

直接排序sort() :在原来的数组上进行排序操作,而不重新创建一个数组

(1)一维数组排序方法

arr=np.array([9,1,5,7,2,3,8,6]) # 先创建一个无序数组
arr
print('排序之前的数组:',arr)
arr.sort()
print('排序之后的数组:',arr)

arr[::-1] # 使用倒序的方法显示

(2)多维数组排序方法

先使用random随机生成一个二维数组:(每次)

import numpy as np
np.random.seed(1000)
arr=np.random.randint(40,size=(3,4))
arr

以上的方法在每次重新刷新了之后会变化数组的数字。

如果对二维数组直接使用arr.sort(),则会直接对行进行排序。

对列进行排序:

print('排序之前的数组:')
print(arr)
arr[:,0].sort()
print('排序之后的数组:')
print(arr)

np.sort(arr[:,2]) # 选择第三列进行排序

arr.sort(axis=1) # 横着排序,原来数组改变
np.sort(arr,axis=1) # 横着排序,但原来的数组不会改变
arr.sort(axis=0) # 竖着排序,原来数组改变
np.sort(arr,axis=0) # 竖着排序,但原来的数组不会改变

(3)argsort函数

接下来看看间接排序:

间接排序:利用特定的参数进行排序,按需排序,需要使用argsort( )函数
argsort函数:返回的是数组值从小到大的索引值。

score=np.array([100,65,76,89,58])
idx=score.argsort()
idx

因此如果打印数组的时候带上下标就相当于排序了:

print(score[idx]) # 利用索引标签来打印

arr[:,arr[0].argsort()]
#按第一行从低到高进行排序,并且对应的列也会跟着变化 
arr#由于使用的是argsort,因此原数组不会改变 

(4)lexsort函数

numpy.lexsort() 用于对多个序列进行排序。把它想象成对电子表格进行排序,每一列代表一个序列,排序时优先照顾靠后的列。

这里举一个应用场景:小升初考试,重点班录取学生按照总成绩录取。在总成绩相同时,数学成绩高的优先录取,在总成绩和数学成绩都相同时,按照英语成绩录取…… 这里,总成绩排在电子表格的最后一列,数学成绩在倒数第二列,英语成绩在倒数第三列。

arr1=np.array(['E','B','C','A','D'])
arr2=np.array(['4','1','3','2','5'])
idx=np.lexsort((arr1,arr2))

9.insert

insert 是插入,但原数组不会改变。

arr=np.arange(6)
np.insert(arr,1,100) # 在下标为1的位置插入100

arr=np.arange(6)
np.insert(arr,1,100) # 在下标为1的位置插入100

10.delete

delete是删除,但原数组同样不会改变。

arr=np.arange(6)
np.delete(arr,1)
np.delete(arr,[1,2])

11.copy

关于copyview ,这里需要了解一下数组切片和列表切片的区别:

  • 数组切片得到的是原数组的一个view(视图),修改切片中的内容改变原来数组
  • 列表切片得到的是原列表的一个copy(复制),修改切片后的列表不会改变原列表
arr=np.arange(6)
arr_copy=arr.copy()
arr_copy[0]=100
arr_copy

12.view

arr=np.arange(6)
arr_view=arr.view()
arr_view[0]=100
arr_view

讲了以上12种数组变形,那么如何使用容器型数据的特性和数组相关函数的方法对字符串或者其他对象进行去重呢?

s='数组切片得到的是原数组的一个,修改切片中的内容会改变原来数组'

假设现在要对s进行去重:

方法一:使用set

sets=set(s)

方法二:使用unique

sarr=np.array(s)
np.unique(list(s))



以上就是关于“python数组变形怎么实现,都有多少方法”的介绍了,感谢各位的阅读,希望这篇文章能帮助大家解决问题。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145