实验目的
熟悉python的基本数据结构,以及文件的输入与输出。
实验数据
利用xxxx年xx机器学习会议的评测数据和评测任务,数据包括训练集和测试集,评测任务为通过给定的训练数据,预测测试集中的关系是正例还是负例,在每个样本最后给出1或者0。
数据描述如下,第一列为关系类型,第二列和第三列为人名,第四列是标题,第五列是关系为正例还是负例,1为正例,0为负例;第六列表示训练集。
事件 | 人物1 | 人物2 | 标题 | 关系(0 or 1) | 训练集 |
---|
测试集描述如下图,格式基本与训练集类似,唯一不同的是第五列没有关系是正例还是负例的标记。
关系 | 人物1 | 人物2 | 事件 |
---|
实验内容
对训练集数据进行处理,只留下前面五列,输出文本命名为exp1_1.txt。
在第一步得到的数据的基础上对19类关系进行分类,生成的文本存放在exp1_train文件夹下,按照关系类别出现的顺序,第一个关系类别的数据存放在1.txt中,第二个关系类别存放在2.txt中,直到19.txt。
测试集按照训练集的19个类别的顺序将各个样本按照关系类别归类,即相同关系类型的数据放到一个文本文件中,同样生成19个类别的测试文件,格式仍旧和测试文件保持一致。存放在exp1_test文件夹下,每个类别的文件仍旧命名为1_test.txt,2_test.txt…同时对每个样本在原测试集中出现的位置进行记录,和19个测试文件一一对应起来。比如第一类“传闻不和”的每个样本在原文中处于第几行,在索引文件中进行记录,保存在文件index1.txt,index2.txt….
解题思路
1.第一题是考察我们文件操作与列表的知识,主要考察的难点是对new文件的读取,根据要求处理后在生成一个txt文件,让我们看一下具体的代码实现:
import os # 创建一个列表用来存储新的内容 list = [] with open("task1.trainSentence.new", "r",encoding='xxx') as file_input: # 打开.new文件,xxx根据自己的编码格式填写 with open("exp1_1.txt", "w", encoding='xxx') as file_output: # 打开exp1_1.txt,xxx根据自己的编码格式填写文件如果没有就创建一个 for Line in file_input: # 遍历每一行的文件 arr = Line.split('\t') # 以\t为分隔符读取 if arr[0] not in list: # if the word is not in the list list.append(arr[0]) # add the word to the list file_output.write(arr[0]+"\t"+arr[1]+"\t"+arr[2]+"\t"+arr[3]+"\t"+arr[4]+"\n") # write the line to the file file_input.close() #关闭.new文件 file_output.close() #关闭创建的txt文件
2.第二题依旧考察了文件操作,在题目一生成的文件基础上,按照同一类型的事件对事件进行分类,是否能高效的分组需要利用循环条件来解决,我们来看看具体的
代码实现
import os file_1 = open("exp1_1.txt", encoding='xxx') # 打开文件,xxx根据自己的编码格式填写 os.mkdir("exp1_train") # 创建目录 os.chdir("exp1_train") # 修改进程的工作目录(使用该目录) a = file.readline() # 按行读取exp1_1.txt文件 arr = a.split("\t") # 按\t间隔符作为分割 b = 1 #设置分组文件的序列 file_2 = open("{}.txt".format(b), "w", encoding="xxx") # 打开文件,xxx根据自己的编码格式填写 for line in file_1: # 按行读取文件 arr_1 = line.split("\t") # 按\t间隔符作为分割 if arr[0] != arr_1[0]: # 如果读取文件的第一列内容与存入新文件的第一列类型不同 file_2.close() # 关掉该文件 b += 1 # 文件序列加一 f_2 = open("{}.txt".format(b), "w", encoding="xxx") # 创建新文件,以另一种类型分类,xxx根据自己的编码格式填写 arr = line.split("\t") # 按\t间隔符作为分割 f_2.write(arr[0]+"\t"+arr[1]+"\t"+arr[2]+"\t"+arr[3]+"t"+arr[4]+"\t""\n") # 将相同类型的文件写入 f_1.close() # 关闭题目一创建的exp1_1.txt文件 f_2.close() # 关闭创建的最后一个类型的文件
3.将训练集的19个类别按照人物的关系进行进一步的分类,我们可以通过字典对数据进行遍历,查找关系,把关系相同的内容放到一个文件夹中,不同则新建一个。
import os with open("exp1_1.txt", encoding='xxx') as file_in1: # 打开文件,xxx根据自己的编码格式填写 i = 1 # 类型序列 arr2 = {} # 创建字典 for line in file_in1: # 按行遍历 arr3 = line[0:2] # 读取关系 if arr3 not in arr2.keys(): arr2[arr3] = i i += 1 # 类型+1 file_in = open("task1.test.new") # 打开文件task1.test.new os.mkdir("exp1_test") # 创建目录 os.chdir("exp1_test") # 修改进程的工作目录(使用该目录) for line in file_in: arr = line[0:2] with open("{}_test.txt".format(arr2[arr]), "a", encoding='xxx') as file_out: arr = line.split('\t') file_out.write(line) i = 1 file_in.seek(0) os.mkdir("exp1_index") os.chdir("exp1_index") for line in file_in: arr = line[0:2] with open("index{}.txt".format(arr2[arr]), "a", encoding='xxx') as file_out: arr = line.split('\t') line = line[0:-1] file_out.write(line + '\t' + "{}".format(i) + "\n") i += 1
实验目的
熟悉python的基本数据结构,以及文件的输入与输出。
实验数据
xxxx年xx天池大赛,也是中国高校第x届大数据挑战赛的数据。数据包括两个表,分别是用户行为表mars_tianchi_user_actions.csv和歌曲艺人表mars_tianchi_songs.csv。大赛开放抽样的歌曲艺人数据,以及和这些艺人相关的6个月内(20150301-20150831)的用户行为历史记录。选手需要预测艺人随后2个月,即60天(20150901-20151030)的播放数据。
实验内容
解题思路:(利用pandas库)
1.
(1)利用.drop_duplicates() 删除重复值
(2)利用.loc[:,‘artist_id’].value_counts() 求出歌手重复次数,即每个歌手的歌曲数目
(3)利用.loc[:,‘songs_id’].value_counts() 求出歌曲没有重复
import pandas as pd data = pd.read_csv(r"C:\mars_tianchi_songs.csv") # 读取数据 Newdata = data.drop_duplicates(subset=['artist_id']) # 删除重复值 artist_sum = Newdata['artist_id'].count() #artistChongFu_count = data.duplicated(subset=['artist_id']).count() artistChongFu_count = data.loc[:,'artist_id'].value_counts() 重复次数,即每个歌手的歌曲数目 songChongFu_count = data.loc[:,'songs_id'].value_counts() # 没有重复(歌手) artistChongFu_count.loc['artist_sum'] = artist_sum # 没有重复(歌曲)artistChongFu_count.to_csv('exp2_1.csv') # 输出文件格式为exp2_1.csv
利用merge()合并两个表
import pandas as pd import os data = pd.read_csv(r"C:\mars_tianchi_songs.csv") data_two = pd.read_csv(r"C:\mars_tianchi_user_actions.csv") num=pd.merge(data_two, data) num.to_csv('exp2_2.csv')
利用groupby()[].sum()进行重复性相加
import pandas as pd data =pd.read_csv('exp2_2.csv') DataCHongfu = data.groupby(['artist_id','Ds'])['gmt_create'].sum()#重复项相加DataCHongfu.to_csv('exp2_3.csv')
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理