有的时候我们可能需要获取一些缺失值的信息,因此我们需要获取这些缺失值在DataFrame中的位置。
假如我们的DataFrame的索引为数值顺序索引,要返回缺失值的位置
import numpy as np import pandas as pd
我们首先构建一个有缺失值的DataFrame
df = pd.DataFrame({'A':[1, 2, 3, np.nan], 'B':[2, np.nan, 4, 6], 'C':[3, 2, np.nan, 3], 'D':[np.nan, 1, np.nan, 2]}) display(df)
首先我们可以查看每列中是否有缺失值
df.isnull().any()
我们发现四个columns均有缺失值,比如我们想知道每列的缺失值的具体位置,以A为例
df.isnull().any()
可以看到返回了A的缺失值位置的索引,这样在定位的时候使用loc函数就可以直接定位到缺失值方便查看了.
如果我们想生成一个字典来存储全部的缺失值位置信息,可以用:
a = df.isnull().any() a = a.loc[a==True] columns = a.index.tolist() mydict = {}#创建一个字典来存储所有的位置 temp = [] for column in columns: temp = df.loc[df[column].isnull()].index.tolist() mydict[column] = temp mydict
#!/usr/bin/evn python # -*-coding:utf8 -*- import pandas as pd data = [[None, None, 90, 80],[57, 43, 89, 65],[78, 50, 67, 78],[None, 78, 90, 73],[67, 45, 78, 76],[77, 88, None, 45],[52, 110, 120, 99],[131, 13, 32, 12]] index = ['语文', '英语', '数学', '政治', '物理', '化学', '生物', '地理'] column = ['张三', '李四', '王五', '周六'] data = pd.DataFrame(data,index=index,columns=column) print(data) print("=========================================================\n") for columname in data.columns: if data[columname].count() != len(data): loc = data[columname][data[columname].isnull().values==True].index.tolist() print('列名:"{}", 第{}行位置有缺失值'.format(columname,loc))
执行结果
F:\Opensources\python\python.exe D:/pythonStudy/EXCELDB/LagelangriCZ_test.py
张三 李四 王五 周六
语文 NaN NaN 90.0 80
英语 57.0 43.0 89.0 65
数学 78.0 50.0 67.0 78
政治 NaN 78.0 90.0 73
物理 67.0 45.0 78.0 76
化学 77.0 88.0 NaN 45
生物 52.0 110.0 120.0 99
地理 131.0 13.0 32.0 12
=========================================================
列名:"张三", 第['语文', '政治']行位置有缺失值
列名:"李四", 第['语文']行位置有缺失值
列名:"王五", 第['化学']行位置有缺失值
Process finished with exit code 0
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理