……最近在学习yolo1、yolo2和yolo3,写这篇博客主要是为了让自己对yolo2的结构有更加深刻的理解,同时要理解清楚先验框的含义。
尽量配合代码观看会更容易理解。
下载链接:https://pan.baidu.com/s/1NAqme8dD2Zoeo1Yd1xQVFw
提取码:oq05
YOLOv2使用了一个新的分类网络DarkNet19作为特征提取部分,DarkNet19包含19个卷积层、5个最大值池化层。网络使用了较多的3 x 3卷积核,在每一次池化操作后把通道数翻倍。借鉴了network in network的思想,把1 x 1的卷积核置于3 x 3的卷积核之间,用来压缩特征。使用batch normalization稳定模型训练,加速收敛,正则化模型。
与此同时,其保留了一个shortcut用于存储之前的特征。
最后输出的conv_dec的shape为(13,13,425),其中13x13是把整个图分为13x13的网格用于预测,425可以分解为(85x5),在85中,其可以分为80和5两部分,由于yolo2常用的是coco数据集,其中具有80个类,剩余的5指的是x、y、w、h和其置信度。x5的5中,意味着预测结果包含5个框,分别对应5个先验框。
其实际情况就是,输入N张416x416的图片,在经过多层的运算后,会输出一个shape为(N,13,13,425)的数据,对应每个图分为13x13的网格后5个先验框的位置。
def conv2d(self,x,filters_num,filters_size,pad_size=0,stride=1,batch_normalize=True,activation=leaky_relu,use_bias=False,name='conv2d'): # 是否进行pad if pad_size > 0: x = tf.pad(x,[[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]]) # pad后进行卷积 out = tf.layers.conv2d(x,filters=filters_num,kernel_size=filters_size,strides=stride,padding='VALID',activation=None,use_bias=use_bias,name=name) # BN应该在卷积层conv和激活函数activation之间, # 后面有BN层的conv就不用偏置bias,并激活函数activation在后 # 如果需要标准化则进行标准化 if batch_normalize: out = tf.layers.batch_normalization(out,axis=-1,momentum=0.9,training=False,name=name+'_bn') if activation: out = activation(out) return out def maxpool(self,x, size=2, stride=2, name='maxpool'): return tf.layers.max_pooling2d(x, pool_size=size, strides=stride,name=name) def passthrough(self,x, stride): # 变小变长 return tf.space_to_depth(x, block_size=stride) def darknet(self): x = tf.placeholder(dtype=tf.float32,shape=[None,416,416,3]) # 416,416,3 -> 416,416,32 net = self.conv2d(x, filters_num=32, filters_size=3, pad_size=1, name='conv1') # 416,416,32 -> 208,208,32 net = self.maxpool(net, size=2, stride=2, name='pool1') # 208,208,32 -> 208,208,64 net = self.conv2d(net, 64, 3, 1, name='conv2') # 208,208,64 -> 104,104,64 net = self.maxpool(net, 2, 2, name='pool2') # 104,104,64 -> 104,104,128 net = self.conv2d(net, 128, 3, 1, name='conv3_1') net = self.conv2d(net, 64, 1, 0, name='conv3_2') net = self.conv2d(net, 128, 3, 1, name='conv3_3') # 104,104,128 -> 52,52,128 net = self.maxpool(net, 2, 2, name='pool3') net = self.conv2d(net, 256, 3, 1, name='conv4_1') net = self.conv2d(net, 128, 1, 0, name='conv4_2') net = self.conv2d(net, 256, 3, 1, name='conv4_3') # 52,52,128 -> 26,26,256 net = self.maxpool(net, 2, 2, name='pool4') # 26,26,256-> 26,26,512 net = self.conv2d(net, 512, 3, 1, name='conv5_1') net = self.conv2d(net, 256, 1, 0, name='conv5_2') net = self.conv2d(net, 512, 3, 1, name='conv5_3') net = self.conv2d(net, 256, 1, 0, name='conv5_4') net = self.conv2d(net, 512, 3, 1, name='conv5_5') # 这一层特征图,要进行后面passthrough,保留一层特征层 shortcut = net # 26,26,512-> 13,13,512 net = self.maxpool(net, 2, 2, name='pool5') # # 13,13,512-> 13,13,1024 net = self.conv2d(net, 1024, 3, 1, name='conv6_1') net = self.conv2d(net, 512, 1, 0, name='conv6_2') net = self.conv2d(net, 1024, 3, 1, name='conv6_3') net = self.conv2d(net, 512, 1, 0, name='conv6_4') net = self.conv2d(net, 1024, 3, 1, name='conv6_5') # 下面这部分主要是training for detection net = self.conv2d(net, 1024, 3, 1, name='conv7_1') # 13,13,1024-> 13,13,1024 net = self.conv2d(net, 1024, 3, 1, name='conv7_2') # shortcut增加了一个中间卷积层,先采用64个1*1卷积核进行卷积,然后再进行passthrough处理 # 得到了26*26*512 -> 26*26*64 -> 13*13*256的特征图 shortcut = self.conv2d(shortcut, 64, 1, 0, name='conv_shortcut') shortcut = self.passthrough(shortcut, 2) # 连接之后,变成13*13*(1024+256) net = tf.concat([shortcut, net],axis=-1) # channel整合到一起,concatenated with the original features,passthrough层与ResNet网络的shortcut类似,以前面更高分辨率的特征图为输入,然后将其连接到后面的低分辨率特征图上, net = self.conv2d(net, 1024, 3, 1, name='conv8') # detection layer: 最后用一个1*1卷积去调整channel,该层没有BN层和激活函数,变成: S*S*(B*(5+C)),在这里为:13*13*425 output = self.conv2d(net, filters_num=self.f_num, filters_size=1, batch_normalize=False, activation=None, use_bias=True, name='conv_dec') return output,x
对于yolo1来讲,其最后输出的结果的shape为(7,7,30),对应着两个框及其种类,尽管网络可以不断的训练最后实现框的位置的调整,但是如果我们能够给出一些框的尺寸备用,效果理论上会更好(实际上也是),这就是先验框的来历。
但是yolo2的框并不是随便就得到的,它是通过计算得到的。
在寻常的kmean算法中,使用的是欧氏距离来完成聚类,但是先验框显然不可以这样,因为大框的欧氏距离更大,yolo2使用的是处理后的IOU作为欧氏距离。
最后得到五个聚类中心便是先验框的宽高。
import numpy as np import xml.etree.ElementTree as ET import glob import random def cas_iou(box,cluster): x = np.minimum(cluster[:,0],box[0]) y = np.minimum(cluster[:,1],box[1]) intersection = x * y area1 = box[0] * box[1] area2 = cluster[:,0] * cluster[:,1] iou = intersection / (area1 + area2 -intersection) return iou def avg_iou(box,cluster): return np.mean([np.max(cas_iou(box[i],cluster)) for i in range(box.shape[0])]) def kmeans(box,k): # 取出一共有多少框 row = box.shape[0] # 每个框各个点的位置 distance = np.empty((row,k)) # 最后的聚类位置 last_clu = np.zeros((row,)) np.random.seed() # 随机选5个当聚类中心 cluster = box[np.random.choice(row,k,replace = False)] # cluster = random.sample(row, k) while True: # 计算每一行距离五个点的iou情况。 for i in range(row): distance[i] = 1 - cas_iou(box[i],cluster) # 取出最小点 near = np.argmin(distance,axis=1) if (last_clu == near).all(): break # 求每一个类的中位点 for j in range(k): cluster[j] = np.median( box[near == j],axis=0) last_clu = near return cluster def load_data(path): data = [] # 对于每一个xml都寻找box for xml_file in glob.glob('{}/*xml'.format(path)): tree = ET.parse(xml_file) height = int(tree.findtext('./size/height')) width = int(tree.findtext('./size/width')) # 对于每一个目标都获得它的宽高 for obj in tree.iter('object'): xmin = int(float(obj.findtext('bndbox/xmin'))) / width ymin = int(float(obj.findtext('bndbox/ymin'))) / height xmax = int(float(obj.findtext('bndbox/xmax'))) / width ymax = int(float(obj.findtext('bndbox/ymax'))) / height xmin = np.float64(xmin) ymin = np.float64(ymin) xmax = np.float64(xmax) ymax = np.float64(ymax) # 得到宽高 data.append([xmax-xmin,ymax-ymin]) return np.array(data) if __name__ == '__main__': anchors_num = 5 # 载入数据集,可以使用VOC的xml path = '../SSD-Tensorflow-master/VOC2012/Annotations' # 载入所有的xml # 存储格式为转化为比例后的width,height data = load_data(path) # 使用k聚类算法 out = kmeans(data,anchors_num) print('acc:{:.2f}%'.format(avg_iou(data,out) * 100)) print(out) print('box',out[:,0] * 13,out[:,1] * 13) ratios = np.around(out[:,0]/out[:,1],decimals=2).tolist() print('ratios:',sorted(ratios))
得到结果为:
acc:61.32% [[0.044 0.07733333] [0.106 0.17866667] [0.408 0.616 ] [0.816 0.83 ] [0.2 0.38933333]] box [ 0.572 1.378 5.304 10.608 2.6 ] [ 1.00533333 2.32266667 8.008 10.79 5.06133333] ratios: [0.51, 0.57, 0.59, 0.66, 0.98]
yolo2的解码过程与SSD类似,但是并不太一样,相比之下yolo2的解码过程更容易理解,因为其仅有单层的特征层。
1、将网络的输出reshape成[-1, 13 * 13, 5, 80 + 5],代表169个中心点每个中心点的5个先验框的情况。
2、将80+5的5中的xywh分离出来,0、1是xy相对中心点的偏移量;2、3是宽和高的情况;4是置信度。
3、建立13x13的网格,代表图片进行13x13处理后网格的中心点。
4、利用计算公式计算实际的bbox的位置 。
解码部分代码如下:
def decode(self,net): self.anchor_size = tf.constant(self.anchor_size,tf.float32) # net的shape为[batch,169,5,85] net = tf.reshape(net, [-1, 13 * 13, self.num_anchors, self.num_class + 5]) # 85 里面 0、1为xy的偏移量,2、3是wh的偏移量,4是置信度,5->84是每个种类的概率 # 偏移量、置信度、类别 # 中心坐标相对于该cell坐上角的偏移量,sigmoid函数归一化到(0,1) # [batch,169,5,2] xy_offset = tf.nn.sigmoid(net[:, :, :, 0:2]) wh_offset = tf.exp(net[:, :, :, 2:4]) obj_probs = tf.nn.sigmoid(net[:, :, :, 4]) class_probs = tf.nn.softmax(net[:, :, :, 5:]) # 在feature map对应坐标生成anchors,13,13 height_index = tf.range(self.feature_map_size[0], dtype=tf.float32) width_index = tf.range(self.feature_map_size[1], dtype=tf.float32) x_cell, y_cell = tf.meshgrid(height_index, width_index) x_cell = tf.reshape(x_cell, [1, -1, 1]) # 和上面[H*W,num_anchors,num_class+5]对应 y_cell = tf.reshape(y_cell, [1, -1, 1]) # x_cell和y_cell是网格分割中心 # xy_offset是相对中心的偏移情况 bbox_x = (x_cell + xy_offset[:, :, :, 0]) / 13 bbox_y = (y_cell + xy_offset[:, :, :, 1]) / 13 bbox_w = (self.anchor_size[:, 0] * wh_offset[:, :, :, 0]) / 13 bbox_h = (self.anchor_size[:, 1] * wh_offset[:, :, :, 1]) / 13 bboxes = tf.stack([bbox_x - bbox_w / 2, bbox_y - bbox_h / 2, bbox_x + bbox_w / 2, bbox_y + bbox_h / 2], axis=3) return bboxes, obj_probs, class_probs
这一部分基本上是所有目标检测通用的部分。
1、将所有box还原成图片中真实的位置。
2、得到每个box最大的预测概率对应的种类。
3、将每个box最大的预测概率乘上置信度得到每个box的分数。
4、对分数进行筛选与排序。
5、非极大抑制,去除重复率过大的框。
实现代码如下:
def bboxes_cut(self,bbox_min_max, bboxes): bboxes = np.copy(bboxes) bboxes = np.transpose(bboxes) bbox_min_max = np.transpose(bbox_min_max) # cut the box bboxes[0] = np.maximum(bboxes[0], bbox_min_max[0]) # xmin bboxes[1] = np.maximum(bboxes[1], bbox_min_max[1]) # ymin bboxes[2] = np.minimum(bboxes[2], bbox_min_max[2]) # xmax bboxes[3] = np.minimum(bboxes[3], bbox_min_max[3]) # ymax bboxes = np.transpose(bboxes) return bboxes def bboxes_sort(self,classes, scores, bboxes, top_k=400): index = np.argsort(-scores) classes = classes[index][:top_k] scores = scores[index][:top_k] bboxes = bboxes[index][:top_k] return classes, scores, bboxes def bboxes_iou(self,bboxes1, bboxes2): bboxes1 = np.transpose(bboxes1) bboxes2 = np.transpose(bboxes2) int_ymin = np.maximum(bboxes1[0], bboxes2[0]) int_xmin = np.maximum(bboxes1[1], bboxes2[1]) int_ymax = np.minimum(bboxes1[2], bboxes2[2]) int_xmax = np.minimum(bboxes1[3], bboxes2[3]) int_h = np.maximum(int_ymax - int_ymin, 0.) int_w = np.maximum(int_xmax - int_xmin, 0.) # 计算IOU int_vol = int_h * int_w # 交集面积 vol1 = (bboxes1[2] - bboxes1[0]) * (bboxes1[3] - bboxes1[1]) # bboxes1面积 vol2 = (bboxes2[2] - bboxes2[0]) * (bboxes2[3] - bboxes2[1]) # bboxes2面积 IOU = int_vol / (vol1 + vol2 - int_vol) # IOU=交集/并集 return IOU # NMS,或者用tf.image.non_max_suppression def bboxes_nms(self,classes, scores, bboxes, nms_threshold=0.2): keep_bboxes = np.ones(scores.shape, dtype=np.bool) for i in range(scores.size - 1): if keep_bboxes[i]: overlap = self.bboxes_iou(bboxes[i], bboxes[(i + 1):]) keep_overlap = np.logical_or(overlap < nms_threshold, classes[(i + 1):] != classes[i]) # IOU没有超过0.5或者是不同的类则保存下来 keep_bboxes[(i + 1):] = np.logical_and(keep_bboxes[(i + 1):], keep_overlap) idxes = np.where(keep_bboxes) return classes[idxes], scores[idxes], bboxes[idxes] def postprocess(self,bboxes, obj_probs, class_probs, image_shape=(416, 416), threshold=0.5): bboxes = np.reshape(bboxes, [-1, 4]) # 将所有box还原成图片中真实的位置 bboxes[:, 0:1] *= float(image_shape[1]) bboxes[:, 1:2] *= float(image_shape[0]) bboxes[:, 2:3] *= float(image_shape[1]) bboxes[:, 3:4] *= float(image_shape[0]) bboxes = bboxes.astype(np.int32) # 转int bbox_min_max = [0, 0, image_shape[1] - 1, image_shape[0] - 1] # 防止识别框炸了 bboxes = self.bboxes_cut(bbox_min_max, bboxes) # 平铺13*13*5 obj_probs = np.reshape(obj_probs, [-1]) # 平铺13*13*5,80 class_probs = np.reshape(class_probs, [len(obj_probs), -1]) # max类别概率对应的index class_max_index = np.argmax(class_probs, axis=1) class_probs = class_probs[np.arange(len(obj_probs)), class_max_index] # 置信度*max类别概率=类别置信度scores scores = obj_probs * class_probs # 类别置信度scores>threshold的边界框bboxes留下 keep_index = scores > threshold class_max_index = class_max_index[keep_index] scores = scores[keep_index] bboxes = bboxes[keep_index] # 排序top_k(默认为400) class_max_index, scores, bboxes = self.bboxes_sort(class_max_index, scores, bboxes) # NMS class_max_index, scores, bboxes = self.bboxes_nms(class_max_index, scores, bboxes) return bboxes, scores, class_max_index
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理