很多博文谈到随机数种子,只是简单论及,利用随机数种子,可以每次生成相同的随机数。想真正用好掌握它,对此很容易产生疑惑,生成相同的随机数数怎么个相同法?随机数种子又作何用处?
下面我们从实例中揭开随机数种子的神秘面纱:
import random # print(help(random)) def test_random_seed_in_std_lib(seed=0, cnt=3): random.seed(seed) print("test seed: ", seed) for _ in range(cnt): print(random.random()) print(random.randint(0,100)) print(random.uniform(1, 10)) print('\n') test_random_seed_in_std_lib() test seed: 0 0.8444218515250481 97 9.01219528753418 0.04048437818077755 65 5.373349269065314 0.9182343317851318 38 9.710199954281542 test_random_seed_in_std_lib() test seed: 0 0.8444218515250481 97 9.01219528753418 0.04048437818077755 65 5.373349269065314 0.9182343317851318 38 9.710199954281542 test_random_seed_in_std_lib(99) test seed: 99 0.40397807494366633 25 6.39495190686897 0.23026272839629136 17 7.8388969285727015 0.2511510083752201 49 5.777313434770537
通过两次运行以上程序,我们得到相同的结果,这说明了以下几点:
以上几点囊括了随机数种子的基本特性,下面我们来对numpy中的随机数种子作进一步的拓展研究。
import numpy as np def test_numpy_random_seed(seed=0, cnt=3): np.random.seed(seed) print("test numpy seed: ", seed) for _ in range(cnt): print(np.random.random()) print(np.random.randn(1, 5)) print(np.random.uniform(1, 10, 5)) print('\n')
多次运行以上的test_numpy_random_seed函数,你可以观察到与使用random模块时相似的情形,进一步验证了我们总结的关于随机数种子的特性。
此外,我们可以对多维随机数组做一些有益的探索:
def test_mult_shape(seed=0): np.random.seed(seed) print(np.random.randn(1, 3)) print(np.random.randn(1, 2)) np.random.seed(seed) print(np.random.randn(2, 5)) test_mult_shape() [[1.76405235 0.40015721 0.97873798]] [[2.2408932 1.86755799]] [[ 1.76405235 0.40015721 0.97873798 2.2408932 1.86755799] [-0.97727788 0.95008842 -0.15135721 -0.10321885 0.4105985 ]]
运行test_mult_shape函数,我们发现,设定相同的随机数组,两次运行两个一行的多维正态分布的结果,与一次运行两行的多维正态分布的结果的第一行完全相同。
这个结果,说明了对相同类型的随机数分布,形状特征不会影响分布的生成秩序,程序中,np.random.randn(1, 2),这一行不像是第二次运行多维正态分布的随机数组,它"几乎"是后缀于它的前一行一次性生成的。
至此,我们对随机数生成顺序有了初步印象,但是这里的顺序,其实比我们的朴素观察更复杂,我们来进一步考察这一点。
def test_numpy_random_seed_order(seed=0): np.random.seed(seed) print(np.random.random()) # print(np.random.randint(1, 10)) print(np.random.randn(1, 5)) np.random.seed(seed) print(np.random.randn(2, 5)) test_numpy_random_seed_order() 0.5488135039273248 [[ 0.74159174 1.55291372 -2.2683282 1.33354538 -0.84272405]] [[ 1.76405235 0.40015721 0.97873798 2.2408932 1.86755799] [-0.97727788 0.95008842 -0.15135721 -0.10321885 0.4105985 ]]
运行以上程序,我们看到,设定了相同的随机数种子,np.random.randn(1, 5)看起来是第一次运行多维正态分布数组,实际上并不是,np.random.randn(2, 5)才是真正的第一次运行多维正态分布随机数组。
这说明,前面的np.random.random()对np.random.randn产生了干扰,使得这次正态分布的随机数组中的任何一个数,都不在np.random.randn(2, 5)中,这样它显示了一种不可把握的随机性。
我们可以把这一点考察得更加深入一点:
def test_numpy_random_seed_order_further(seed=0, randint_high=10): np.random.seed(seed) print(np.random.randint(1, randint_high)) print(np.random.randn(1, 5)) np.random.seed(seed) print(np.random.randn(2, 5)) test_numpy_random_seed_order_further() 6 [[ 0.11849646 0.11396779 0.37025538 1.04053075 -1.51698273]] [[ 1.76405235 0.40015721 0.97873798 2.2408932 1.86755799] [-0.97727788 0.95008842 -0.15135721 -0.10321885 0.4105985 ]] test_numpy_random_seed_order_further(randint_high=5) 1 [[ 1.12279492 0.30280522 0.07085926 0.07304142 -1.42232584]] [[ 1.76405235 0.40015721 0.97873798 2.2408932 1.86755799] [-0.97727788 0.95008842 -0.15135721 -0.10321885 0.4105985 ]]
紧接上面对随机数干扰项对考察,我们看到,这次我们改变了干扰项随机数生成器,np.random.randn(1, 5)的生成结果不同于test_numpy_random_seed_order中同一行的运行结果。
另外,两次设置不同的randint的右边界,np.random.randn(1, 5)生成的结果也全然不同,这说明了np.random.randint设置不同的参数,即是全然不同的随机数发生器。这一点,也不难在其他类型的随机数分布中得到验证。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理