怎么新建MySQL数据库

发布时间:2022-09-19 作者:admin
阅读:277
今天小编跟大家讲解下有关“Python中如何进行聚合运算,相关知识有哪些”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。

在数据分析中,分组聚合二者缺一不可。对数据聚合(求和、平均值等)通常是不可避免的。pd.agg()很方便进行聚合操作。

1. 创建DataFrame对象

import pandas as pd
df1 = pd.DataFrame({'sex':list('FFMFMMF'),'smoker':list('YNYYNYY'),'age':[21,30,17,37,40,18,26],'weight':[120,100,132,140,94,89,123]})

grouped = df1.groupby(['sex','smoker'])
# sex有 F M 二值,smoker有 Y N 二值,故分成四组。

2. 单列聚合

grouped['age'].agg('mean')
sex  smoker
F    N         30.0
     Y         28.0
M    N         40.0
     Y         17.5
Name: age, dtype: float64

3. 多列聚合

grouped.agg('mean')

4. 多种聚合运算

grouped['age'].agg(['min','max'])

5. 多种聚合运算并更改列名

grouped['age'].agg([('A','mean'),('B','max')])

6. 不同的列运用不同的聚合函数

grouped.agg({'age':['sum','mean'], 'weight':['min','max']})

7. 使用自定义的聚合函数

def Max_cut_Min(group):
    return group.max()-group.min()

grouped.agg(Max_cut_Min)

8. 方便的descibe

grouped.describe()



关于“Python中如何进行聚合运算,相关知识有哪些”的内容今天就到这,感谢各位的阅读,大家可以动手实际看看,对大家加深理解更有帮助哦。如果想了解更多相关内容的文章,关注我们,群英网络小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145