大家好,这次写作的目的是为了加深对数据可视化pyecharts的认识,也想和大家分享一下。如果下面文章中有错误的地方还请指正,哈哈哈!!!
本次主要用到的第三方库:
之所以数据可视化选用pyecharts,是因为它含有丰富的精美图表,地图,也可轻松集成至 Flask,Django 等主流 Web 框架中,并且在html渲染网页时把图片保存下来(这里好像截屏就可以了,),任君挑选!!!
这次的数据采集是从招聘网址上抓取到的python招聘岗位信息,嗯……其实这抓取到的数据有点少(只有1200条左右,也没办法,岗位太少了…),所以在后面做可视化图表的时候会导致不好看,骇。本来也考虑过用java(数据1万+)的数据来做测试的,但是想到写的是python,所以也就只能将就用这个数据了,当然如果有感兴趣的朋友,你们可以用java,前端这些岗位的数据来做测试,下面提供的数据抓取方法稍微改一下就可以抓取其它岗位了。
好了,废话不多说,直接开始吧!
这里为大家介绍一个很好用的网站,可以帮助我们在写爬虫时快速构建请求头、cookie这些。但是这个网站也不知为什么,反正在访问时也经常访问不了!额……,介绍下它的使用吧!首先,我们只需要根据下面图片上步骤一样。
完成之后,我们就复制好了请求头里面的内容了,然后打开网址https://curlconverter.com/进入后直接在输入框里Ctrl+v粘贴即可。然后就会在下面解析出内容,我们直接复制就完成了,快速,简单,哈哈哈。
这里我们请求网址得到的数据它并没有在html元素标签里面,所以就不能用lxml,css选择器等这些来解析数据。这里我们用re正则来解析数据,得到的数据看到起来好像字典类型,但是它并不是,所以我们还需要用json来把它转化成字典类型的数据方便我们提取。
这里用json转化为字典类型的数据后,不好查看时,可以用pprint来打印查看。
import pprint pprint.pprint(parse_data_dict)
import requests import re import json import csv import time from random import random from fake_useragent import UserAgent def spider_python(key_word): headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Accept-Language': 'zh-CN,zh;q=0.9', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Pragma': 'no-cache', 'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-User': '?1', 'Upgrade-Insecure-Requests': '1', 'User-Agent': UserAgent().Chrome, 'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="100", "Google Chrome";v="100"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', } params = { 'lang': 'c', 'postchannel': '0000', 'workyear': '99', 'cotype': '99', 'degreefrom': '99', 'jobterm': '99', 'companysize': '99', 'ord_field': '0', 'dibiaoid': '0', 'line': '', 'welfare': '', } save_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()).replace(' ', '_').replace(':','_') file_path = f'./testDataPython-{save_time}.csv' f_csv = open(file_path, mode='w', encoding='utf-8', newline='') fieldnames = ['公司名字', '职位名字', '薪资', '工作地点', '招聘要求', '公司待遇','招聘更新时间', '招聘发布时间', '公司人数', '公司类型', 'companyind_text', 'job_href', 'company_href'] dict_write = csv.DictWriter(f_csv, fieldnames=fieldnames) dict_write.writeheader() page = 0 #页数 error_time = 0 #在判断 职位名字中是否没有关键字的次数,这里定义出现200次时,while循环结束 # (因为在搜索岗位名字时(如:搜索python),会在网站20多页时就没有关于python的岗位了,但是仍然有其它的岗位出现,所以这里就需要if判断,使其while循环结束) flag = True while flag: page += 1 print(f'第{page}抓取中……') try: time.sleep(random()*3) #这里随机休眠一下,简单反爬处理,反正我们用的是单线程爬取,也不差那一点时间是吧 url='这里你们自己构建url吧,从上面的图片应该能看出,我写出来的话实在是不行,过不了审核,难受!!!' ###这里还是要添加cookies的好,我们要伪装好不是?防止反爬,如果你用上面提供的方法,也就很快的构建出cookies。 response = requests.get(url=url,params=params, headers=headers) except: print(f'\033[31m第{page}请求异常!033[0m') flag = False parse_data = re.findall('"engine_jds":(.*?),"jobid_count"',response.text) parse_data_dict = json.loads(parse_data[0]) # import pprint # pprint.pprint(parse_data_dict) # exit() for i in parse_data_dict: ###在这里要处理下异常,因为在爬取多页时,可能是网站某些原因会导致这里的结构变化 try: companyind_text = i['companyind_text'] except Exception as e: print(f'\033[31m异常:{e}033[0m') companyind_text = None dic = { '公司名字': i['company_name'], '职位名字': i['job_name'], '薪资': i['providesalary_text'], '工作地点': i['workarea_text'], '招聘要求': ' '.join(i['attribute_text']), '公司待遇': i['jobwelf'], '招聘更新时间': i['updatedate'], '招聘发布时间': i['issuedate'], '公司人数': i['companysize_text'], '公司类型': i['companytype_text'], 'companyind_text': companyind_text, 'job_href': i['job_href'], 'company_href': i['company_href'], } if 'Python' in dic['职位名字'] or 'python' in dic['职位名字']: dict_write.writerow(dic) print(dic['职位名字'], '——保存完毕!') else: error_time += 1 if error_time == 200: flag = False print('抓取完成!') f_csv.close() if __name__ == '__main__': key_word = 'python' # key_word = 'java' ##这里不能输入中文,网址做了url字体加密,简单的方法就是直接从网页url里面复制下来用(如:前端) # key_word = '%25E5%2589%258D%25E7%25AB%25AF' #前端 spider_python(key_word)
本次数据可视化选用的是pyecharts第三方库,它制作图表是多么的强大与精美!!!想要对它进行一些简单地了解话可以前往这篇博文:
https://www.jb51.net/article/247122.htm
安装: pip install pyecharts
本次要对薪资、工作地点、招聘要求里面的经验与学历进行数据处理并可视化。
按住鼠标中间滑轮或鼠标左键可进行调控。
import pandas as pd from pyecharts import options as opts python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') python_data['工作地点'] = [i.split('-')[0] for i in python_data['工作地点']] city = python_data['工作地点'].value_counts() ###柱状图 from pyecharts.charts import Bar c = ( Bar() .add_xaxis(city.index.tolist()) #城市列表数据项 .add_yaxis("Python", city.values.tolist())#城市对应的岗位数量列表数据项 .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘岗位所在城市分布情况"), datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")], xaxis_opts=opts.AxisOpts(name='城市'), # 设置x轴名字属性 yaxis_opts=opts.AxisOpts(name='岗位数量'), # 设置y轴名字属性 ) .render("bar_datazoom_both.html") )
省份
这里对所在省份进行可视化。
import pandas as pd import copy from pyecharts import options as opts python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') python_data_deepcopy = copy.deepcopy(python_data) #深复制一份数据 python_data['工作地点'] = [i.split('-')[0] for i in python_data['工作地点']] city = python_data['工作地点'].value_counts() city_list = [list(ct) for ct in city.items()] def province_city(): '''这是从接口里爬取的数据(不太准,但是误差也可以忽略不计!)''' area_data = {} with open('./中国省份_城市.txt', mode='r', encoding='utf-8') as f: for line in f: line = line.strip().split('_') area_data[line[0]] = line[1].split(',') province_data = [] for ct in city_list: for k, v in area_data.items(): for i in v: if ct[0] in i: ct[0] = k province_data.append(ct) area_data_deepcopy = copy.deepcopy(area_data) for k in area_data_deepcopy.keys(): area_data_deepcopy[k] = 0 for i in province_data: if i[0] in area_data_deepcopy.keys(): area_data_deepcopy[i[0]] = area_data_deepcopy[i[0]] +i[1] province_data = [[k,v]for k,v in area_data_deepcopy.items()] best = max(area_data_deepcopy.values()) return province_data,best province_data,best = province_city() #地图_中国地图(带省份)Map-VisualMap(连续型) c2 = ( Map() .add( "Python",province_data, "china") .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘岗位——全国分布情况"), visualmap_opts=opts.VisualMapOpts(max_=int(best / 2)), ) .render("map_china.html") )
这是 中国省份_城市.txt 里面的内容,通过[接口]抓取到的中国地区信息。
源码:
import requests import json header = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36", } response = requests.get('https://j.i8tq.com/weather2020/search/city.js',headers=header) result = json.loads(response.text[len('var city_data ='):]) print(result) each_province_data = {} f = open('./中国省份_城市.txt',mode='w',encoding='utf-8') for k,v in result.items(): province = k if k in ['上海', '北京', '天津', '重庆']: city = ','.join(list(v[k].keys())) else: city = ','.join(list(v.keys())) f.write(f'{province}_{city}\n') each_province_data[province] = city f.close() print(each_province_data)
城市
这里对所在城市进行可视化。
import pandas as pd import copy from pyecharts import options as opts python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') python_data_deepcopy = copy.deepcopy(python_data) #深复制一份数据 python_data['工作地点'] = [i.split('-')[0] for i in python_data['工作地点']] city = python_data['工作地点'].value_counts() city_list = [list(ct) for ct in city.items()] ###地图_中国地图(带城市)——Map-VisualMap(分段型) from pyecharts.charts import Map c1 = ( Map(init_opts=opts.InitOpts(width="1244px", height="700px",page_title='Map-中国地图(带城市)', bg_color="#f4f4f4")) .add( "Python", city_list, "china-cities", #地图 label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘岗位——全国分布情况"), visualmap_opts=opts.VisualMapOpts(max_=city_list[0][1],is_piecewise=True), ) .render("map_china_cities.html") )
地区
这里对上海地区可视化。
import pandas as pd import copy from pyecharts import options as opts python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') python_data_deepcopy = copy.deepcopy(python_data) #深复制一份数据 shanghai_data = [] sh = shanghai_data.append for i in python_data_deepcopy['工作地点']: if '上海' in i: if len(i.split('-')) > 1: sh(i.split('-')[1]) shanghai_data = pd.Series(shanghai_data).value_counts() shanghai_data_list = [list(sh) for sh in shanghai_data.items()] #上海地图 c3 = ( Map() .add("Python", shanghai_data_list, "上海") ###这个可以更改地区(如:成都)这里改了的话,上面的数据处理也要做相应的更改 .set_global_opts( title_opts=opts.TitleOpts(title="Map-上海地图"), visualmap_opts=opts.VisualMapOpts(max_=shanghai_data_list[0][1]) ) .render("map_shanghai.html") )
Pie1
from pyecharts import options as opts from pyecharts.charts import Pie import pandas as pd python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') require_list = [] rl = require_list.append for i in python_data['招聘要求']: if '经验' in i: rl(i.split(' ')[1]) else: rl('未知') python_data['招聘要求'] = require_list require = python_data['招聘要求'].value_counts() require_list = [list(ct) for ct in require.items()] print(require_list) c = ( Pie() .add( "", require_list, radius=["40%", "55%"], label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts( title_opts=opts.TitleOpts(title="工作经验要求"), legend_opts=opts.LegendOpts(padding=20, pos_left=500), ) .render("pie_rich_label.html") )
Pie2
from pyecharts import options as opts from pyecharts.charts import Pie import pandas as pd python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') xueli_list = [] xl = xueli_list.append for i in python_data['招聘要求']: if len(i.split(' ')) == 3: xl(i.split(' ')[2]) else: xl('未知') python_data['招聘要求'] = xueli_list xueli_require = python_data['招聘要求'].value_counts() xueli_require_list = [list(ct) for ct in xueli_require.items()] c = ( Pie() .add( "", xueli_require_list, radius=["30%", "55%"], rosetype="area", ) .set_global_opts(title_opts=opts.TitleOpts(title="学历要求")) .render("pie_rosetype.html") )
这里对薪资情况进行可视化。
import pandas as pd import re python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') sal = python_data['薪资'] xin_zi1 = [] xin_zi2 = [] xin_zi3 = [] xin_zi4 = [] xin_zi5 = [] xin_zi6 = [] for s in sal: s = str(s) if '千' in s: xin_zi1.append(s) else: if re.findall('-(.*?)万',s): s = float(re.findall('-(.*?)万',s)[0]) if 1.0<s<=1.5: xin_zi2.append(s) elif 1.5<s<=2.5: xin_zi3.append(s) elif 2.5<s<=3.2: xin_zi4.append(s) elif 3.2<s<=4.0: xin_zi5.append(s) else: xin_zi6.append(s) xin_zi = [['<10k',len(xin_zi1)],['10~15k',len(xin_zi2)],['15<25k',len(xin_zi3)], ['25<32k',len(xin_zi4)],['32<40k',len(xin_zi5)],['>40k',len(xin_zi6),]] import pyecharts.options as opts from pyecharts.charts import Line x, y =[i[0] for i in xin_zi],[i[1] for i in xin_zi] c2 = ( Line() .add_xaxis(x) .add_yaxis( "Python", y, markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem(name="max", coord=[x[2], y[2]], value=y[2])] #name='自定义标记点' ), ) .set_global_opts(title_opts=opts.TitleOpts(title="薪资情况"), xaxis_opts=opts.AxisOpts(name='薪资范围'), # 设置x轴名字属性 yaxis_opts=opts.AxisOpts(name='数量'), # 设置y轴名字属性 ) .render("line_markpoint_custom.html") )
最后,将多个html上的图表进行合并成一个html图表。
首先,我们执行下面这串格式的代码(只写了四个图表,自己做相应添加即可)
import pandas as pd from pyecharts.charts import Bar,Map,Pie,Line,Page from pyecharts import options as opts python_data = pd.read_csv('./testDataPython-2022-05-01_11_48_36.csv') python_data['工作地点'] = [i.split('-')[0] for i in python_data['工作地点']] city = python_data['工作地点'].value_counts() city_list = [list(ct) for ct in city.items()] ###柱状图 def bar_datazoom_slider() -> Bar: c = ( Bar() .add_xaxis(city.index.tolist()) #城市列表数据项 .add_yaxis("Python", city.values.tolist())#城市对应的岗位数量列表数据项 .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘岗位所在城市分布情况"), datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")], xaxis_opts=opts.AxisOpts(name='城市'), # 设置x轴名字属性 yaxis_opts=opts.AxisOpts(name='岗位数量'), # 设置y轴名字属性 ) ) return c # 地图_中国地图(带省份)Map-VisualMap(连续型) def map_china() -> Map: import copy area_data = {} with open('./中国省份_城市.txt', mode='r', encoding='utf-8') as f: for line in f: line = line.strip().split('_') area_data[line[0]] = line[1].split(',') province_data = [] for ct in city_list: for k, v in area_data.items(): for i in v: if ct[0] in i: ct[0] = k province_data.append(ct) area_data_deepcopy = copy.deepcopy(area_data) for k in area_data_deepcopy.keys(): area_data_deepcopy[k] = 0 for i in province_data: if i[0] in area_data_deepcopy.keys(): area_data_deepcopy[i[0]] = area_data_deepcopy[i[0]] + i[1] province_data = [[k, v] for k, v in area_data_deepcopy.items()] best = max(area_data_deepcopy.values()) c = ( Map() .add("Python", province_data, "china") .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘岗位——全国分布情况"), visualmap_opts=opts.VisualMapOpts(max_=int(best / 2)), ) ) return c #饼图 def pie_rich_label() -> Pie: require_list = [] rl = require_list.append for i in python_data['招聘要求']: if '经验' in i: rl(i.split(' ')[1]) else: rl('未知') python_data['招聘要求'] = require_list require = python_data['招聘要求'].value_counts() require_list = [list(ct) for ct in require.items()] c = ( Pie() .add( "", require_list, radius=["40%", "55%"], label_opts=opts.LabelOpts( position="outside", formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ", background_color="#eee", border_color="#aaa", border_width=1, border_radius=4, rich={ "a": {"color": "#999", "lineHeight": 22, "align": "center"}, "abg": { "backgroundColor": "#e3e3e3", "width": "100%", "align": "right", "height": 22, "borderRadius": [4, 4, 0, 0], }, "hr": { "borderColor": "#aaa", "width": "100%", "borderWidth": 0.5, "height": 0, }, "b": {"fontSize": 16, "lineHeight": 33}, "per": { "color": "#eee", "backgroundColor": "#334455", "padding": [2, 4], "borderRadius": 2, }, }, ), ) .set_global_opts( title_opts=opts.TitleOpts(title="工作经验要求"), legend_opts=opts.LegendOpts(padding=20, pos_left=500), ) ) return c #折线图 def line_markpoint_custom() -> Line: import re sal = python_data['薪资'] xin_zi1 = [] xin_zi2 = [] xin_zi3 = [] xin_zi4 = [] xin_zi5 = [] xin_zi6 = [] for s in sal: s = str(s) if '千' in s: xin_zi1.append(s) else: if re.findall('-(.*?)万',s): s = float(re.findall('-(.*?)万',s)[0]) if 1.0<s<=1.5: xin_zi2.append(s) elif 1.5<s<=2.5: xin_zi3.append(s) elif 2.5<s<=3.2: xin_zi4.append(s) elif 3.2<s<=4.0: xin_zi5.append(s) else: xin_zi6.append(s) xin_zi = [['<10k',len(xin_zi1)],['10~15k',len(xin_zi2)],['15<25k',len(xin_zi3)], ['25<32k',len(xin_zi4)],['32<40k',len(xin_zi5)],['>40k',len(xin_zi6),]] x, y =[i[0] for i in xin_zi],[i[1] for i in xin_zi] c = ( Line() .add_xaxis(x) .add_yaxis( "Python", y, markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem(name="MAX", coord=[x[2], y[2]], value=y[2])] ), ) .set_global_opts(title_opts=opts.TitleOpts(title="薪资情况"), xaxis_opts=opts.AxisOpts(name='薪资范围'), # 设置x轴名字属性 yaxis_opts=opts.AxisOpts(name='数量'), # 设置y轴名字属性 ) ) return c #合并 def page_draggable_layout(): page = Page(layout=Page.DraggablePageLayout) page.add( bar_datazoom_slider(), map_china(), pie_rich_label(), line_markpoint_custom(), ) page.render("page_draggable_layout.html") if __name__ == "__main__": page_draggable_layout()
执行完后,会在当前目录下生成一个page_draggable_layout.html。
然后我们用浏览器打开,就会看到下面这样,我们可以随便拖动虚线框来进行组合,组合好后点击Save Config就会下载一个chart_config.json,然后在文件中找到它,剪切到py当前目录。
文件放置好后,可以新建一个py文件来执行以下代码,这样就会生成一个resize_render.html,也就完成了。
from pyecharts.charts import Page Page.save_resize_html('./page_draggable_layout.html',cfg_file='chart_config.json')
最后,点击打开resize_render.html,我们合并成功的图表就是这样啦!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理