这篇文章主要介绍了使用Python怎样对pandas数据合并的操作,对大家学习Python具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章能有所收获,接下来小编带着大家一起了解看看。
concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False)
axis: 需要合并链接的轴,0是行,1是列join:连接的方式 inner,或者outer
#现将表构成list,然后在作为concat的输入 In [4]: frames = [df1, df2, df3] In [5]: result = pd.concat(frames)
要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
也可以通过传入字典来增加分组键
pieces = {'x': df1, 'y': df2, 'z': df3} result = pd.concat(pieces)
当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并,是以索引号进行连接的
result = pd.concat([df1, df4], axis=1)
加上join参数的属性,如果为'inner'得到的是两表的交集,如果是outer,得到的是两表的并集。
result = pd.concat([df1, df4], axis=1, join='inner')
如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接
result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)
result = df1.append(df2)
如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
以上就是关于Python怎样对pandas数据合并的操作的操作介绍,希望对大家学习和了解pandas数据合并有帮助,想要了解更多Python的内容可以关注其他相关文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理