怎么新建MySQL数据库

发布时间:2022-09-16 作者:admin
阅读:328
这篇文章给大家介绍了“keras模型保存与读取相关函数有哪些呢?”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。

开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢。

Keras中保存与读取的重要函数

1、model.save

model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。

pip install h5py

完成安装后,可以通过如下函数保存模型。

model.save("./model.hdf5")

其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。

2、load_model

load_model用于载入模型。

具体使用方式如下:

model = load_model("./model.hdf5")

其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。

全部代码

这是一个简单的手写体识别例子,在之前也讲解过如何构建

python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。

import numpy as np
from keras.models import Sequential,load_model,save_model
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化 
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算categorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
    Dense(32,input_dim = 784),
    Activation("relu"),
    Dense(10),
    Activation("softmax")
    ]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100)
print("\nTest")
# 测试
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
# 保存模型
model.save("./model.hdf5")
# 删除现有模型
del model
print("model had been del")
# 再次载入模型
model = load_model("./model.hdf5")
# 预测
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)

实验结果为:

Epoch 1/2
60000/60000 [==============================] - 6s 104us/step - loss: 0.4217 - acc: 0.8888
Epoch 2/2
60000/60000 [==============================] - 6s 99us/step - loss: 0.2240 - acc: 0.9366
Test
10000/10000 [==============================] - 1s 149us/step
accuracy: 0.9419
model had been del
10000/10000 [==============================] - 1s 117us/step
accuracy: 0.9419

以上就是关于“keras模型保存与读取相关函数有哪些呢?”的介绍了,感谢各位的阅读,希望这篇文章能帮助大家解决问题。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145