该函数共有十一个参数,常用的有:
名称 name
变量规格 shape
变量类型 dtype
变量初始化方式 initializer
所属于的集合 collections
def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None):
该函数的作用是创建新的tensorflow变量
常见的initializer有:
常量初始化器 tf.constant_initializer
正太分布初始化器 tf.random_normal_initializer
截断正态分布初始化器 tf.truncated_normal_initializer
均匀分布初始化器 tf.random_uniform_initializer
该例子将分别讲述常见的几种initializer的使用方法
import tensorflow as tf; import numpy as np; #常量初始化器 v1_cons = tf.get_variable('v1_cons', shape=[1,4], initializer=tf.constant_initializer()) v2_cons = tf.get_variable('v2_cons', shape=[1,4], initializer=tf.constant_initializer(9)) #正太分布初始化器 v1_nor = tf.get_variable('v1_nor', shape=[1,4], initializer=tf.random_normal_initializer()) v2_nor = tf.get_variable('v2_nor', shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5, seed=0))#均值、方差、种子值 #截断正态分布初始化器 v1_trun = tf.get_variable('v1_trun', shape=[1,4], initializer=tf.truncated_normal_initializer()) v2_trun = tf.get_variable('v2_trun', shape=[1,4], initializer=tf.truncated_normal_initializer(mean=0, stddev=5, seed=0))#均值、方差、种子值 #均匀分布初始化器 v1_uni = tf.get_variable('v1_uni', shape=[1,4], initializer=tf.random_uniform_initializer()) v2_uni = tf.get_variable('v2_uni', shape=[1,4], initializer=tf.random_uniform_initializer(maxval=-1., minval=1., seed=0))#最大值、最小值、种子值 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("常量初始化器v1_cons:",sess.run(v1_cons)) print("常量初始化器v2_cons:",sess.run(v2_cons)) print("正太分布初始化器v1_nor:",sess.run(v1_nor)) print("正太分布初始化器v2_nor:",sess.run(v2_nor)) print("截断正态分布初始化器v1_trun:",sess.run(v1_trun)) print("截断正态分布初始化器v2_trun:",sess.run(v2_trun)) print("均匀分布初始化器v1_uni:",sess.run(v1_uni)) print("均匀分布初始化器v2_uni:",sess.run(v2_uni))
其输出为:
常量初始化器v1_cons: [[0. 0. 0. 0.]] 常量初始化器v2_cons: [[9. 9. 9. 9.]] 正太分布初始化器v1_nor: [[-0.7286455 -0.03095582 1.6400269 -0.90134907]] 正太分布初始化器v2_nor: [[-1.9957879 10.522196 0.8553612 2.7325907]] 截断正态分布初始化器v1_trun: [[-0.52284956 -0.77045 1.9507815 0.96106136]] 截断正态分布初始化器v2_trun: [[-1.9957879 0.8553612 2.7325907 2.1127698]] 均匀分布初始化器v1_uni: [[0.5369104 0.05912018 0.1587832 0.2859378 ]] 均匀分布初始化器v2_uni: [[ 0.79827476 -0.9403336 -0.69752836 0.9034374 ]]
到此,关于“Python tensorflow函数tf.get_variable有什么用”的学习就结束了,希望能够解决大家的疑惑,另外大家动手实践也很重要,对大家加深理解和学习很有帮助。如果想要学习更多的相关知识,欢迎关注群英网络资讯站,小编每天都会给大家分享实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理