怎么新建MySQL数据库

发布时间:2022-09-16 作者:admin
阅读:183
在日常操作或是项目的实际应用中,有不少朋友对于“用PyTorch进行回归运算的实现代码是什么”的问题会存在疑惑,下面小编给大家整理和分享了相关知识和资料,易于大家学习和理解,有需要的朋友可以借鉴参考,下面我们一起来了解一下吧。


学习前言

我发现不仅有很多的Keras模型,还有很多的PyTorch模型,还是学学Pytorch吧,我也想了解以下tensor到底是个啥。

PyTorch中的重要基础函数

1、class Net(torch.nn.Module)神经网络的构建:

PyTorch中神经网络的构建和Tensorflow的不一样,它需要用一个类来进行构建(后面还可以用与Keras类似的Sequential模型构建),当然基础还是用类构建,这个类需要继承PyTorch中的神经网络模型,torch.nn.Module,具体构建方式如下:

# 继承torch.nn.Module模型
class Net(torch.nn.Module):
	# 重载初始化函数(我忘了这个是不是叫重载)
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        # 在初始化的同时构建两个全连接层(也就是一个隐含层)
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
	# forward函数用于构建前向传递的过程
    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        # 实际的输出
        output_layer = self.predict(hidden_layer)
        return output_layer

该部分构建了一个含有一层隐含层的神经网络,隐含层神经元个数为n_hidden。
在建立了上述的类后,就可以通过如下函数建立神经网络:

net = Net(n_feature=1, n_hidden=10, n_output=1)

2、optimizer优化器

optimizer用于构建模型的优化器,与tensorflow中优化器的意义相同,PyTorch的优化器在前缀为torch.optim的库中。

优化器需要传入net网络的参数。

具体使用方式如下:

# torch.optim是优化器模块
# Adam可以改成其它优化器,如SGD、RMSprop等
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

3、loss损失函数定义

loss用于定义神经网络训练的损失函数,常用的损失函数是均方差损失函数(回归)和交叉熵损失函数(分类)。

具体使用方式如下:

# 均方差lossloss_func = torch.nn.MSELoss() 

4、训练过程

训练过程分为三个步骤:

1、利用网络预测结果。

prediction = net(x)

2、利用预测的结果与真实值对比生成loss。

loss = loss_func(prediction, y)

3、进行反向传递(该部分有三步)。

# 均方差loss
# 反向传递步骤
# 1、初始化梯度
optimizer.zero_grad()
# 2、计算梯度
loss.backward()
# 3、进行optimizer优化
optimizer.step()

全部代码

这是一个简单的回归预测模型。

import torch
from torch.autograd import Variable
import torch.nn.functional as functional
import matplotlib.pyplot as plt
import numpy as np
# x的shape为(100,1)
x = torch.from_numpy(np.linspace(-1,1,100).reshape([100,1])).type(torch.FloatTensor)
# y的shape为(100,1)
y = torch.sin(x) + 0.2*torch.rand(x.size())
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        output_layer = self.predict(hidden_layer)
        return output_layer
# 类的建立
net = Net(n_feature=1, n_hidden=10, n_output=1)
# torch.optim是优化器模块
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
# 均方差loss
loss_func = torch.nn.MSELoss() 
for t in range(1000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    # 反向传递步骤
    # 1、初始化梯度
    optimizer.zero_grad()
    # 2、计算梯度
    loss.backward()
    # 3、进行optimizer优化
    optimizer.step()
    if t & 50 == 0:
        print("The loss is",loss.data.numpy())

运行结果为:

The loss is 0.27913737
The loss is 0.2773982
The loss is 0.27224126
…………
The loss is 0.0035993527
The loss is 0.0035974088
The loss is 0.0035967692


到此这篇关于“用PyTorch进行回归运算的实现代码是什么”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145