怎么新建MySQL数据库

发布时间:2022-09-16 作者:admin
阅读:249
这篇文章主要介绍了“Keras构建RNN网络训练如何实现”相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Keras构建RNN网络训练如何实现文章都会有所收获,下面我们一起来看看吧。

Keras中构建RNN的重要函数

1、SimpleRNN

SimpleRNN用于在Keras中构建普通的简单RNN层,在使用前需要import。

from keras.layers import SimpleRNN

在实际使用时,需要用到几个参数。

model.add(
    SimpleRNN(
        batch_input_shape = (BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
        output_dim = CELL_SIZE,
    )
)

其中,batch_input_shape代表RNN输入数据的shape,shape的内容分别是每一次训练使用的BATCH,TIME_STEPS表示这个RNN按顺序输入的时间点的数量,INPUT_SIZE表示每一个时间点的输入数据大小。
CELL_SIZE代表训练每一个时间点的神经元数量。

2、model.train_on_batch

与之前的训练CNN网络和普通分类网络不同,RNN网络在建立时就规定了batch_input_shape,所以训练的时候也需要一定量一定量的传入训练数据。
model.train_on_batch在使用前需要对数据进行处理。获取指定BATCH大小的训练集。

X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
index_start += BATCH_SIZE

具体训练过程如下:

for i in range(500):
    X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
    Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
    index_start += BATCH_SIZE
    cost = model.train_on_batch(X_batch,Y_batch)
    if index_start >= X_train.shape[0]:
        index_start = 0
    if i%100 == 0:
        ## acc
        cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50)
        ## W,b = model.layers[0].get_weights()
        print("accuracy:",accuracy)
        x = X_test[1].reshape(1,28,28)

全部代码

这是一个RNN神经网络的例子,用于识别手写体。

import numpy as np
from keras.models import Sequential
from keras.layers import SimpleRNN,Activation,Dense ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import Adam
TIME_STEPS = 28
INPUT_SIZE = 28
BATCH_SIZE = 50
index_start = 0
OUTPUT_SIZE = 10
CELL_SIZE = 75
LR = 1e-3
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
X_train = X_train.reshape(-1,28,28)/255
X_test = X_test.reshape(-1,28,28)/255
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
model = Sequential()
# conv1
model.add(
    SimpleRNN(
        batch_input_shape = (BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
        output_dim = CELL_SIZE,
    )
)
model.add(Dense(OUTPUT_SIZE))
model.add(Activation("softmax"))
adam = Adam(LR)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = adam,metrics = ['accuracy'])
## tarin
for i in range(500):
    X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
    Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
    index_start += BATCH_SIZE
    cost = model.train_on_batch(X_batch,Y_batch)
    if index_start >= X_train.shape[0]:
        index_start = 0
    if i%100 == 0:
        ## acc
        cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50)
        ## W,b = model.layers[0].get_weights()
        print("accuracy:",accuracy)

实验结果为:

10000/10000 [==============================] - 1s 147us/step
accuracy: 0.09329999938607215
…………………………
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9395000022649765
10000/10000 [==============================] - 1s 109us/step
accuracy: 0.9422999995946885
10000/10000 [==============================] - 1s 114us/step
accuracy: 0.9534000000357628
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9566000008583069
10000/10000 [==============================] - 1s 113us/step
accuracy: 0.950799999833107
10000/10000 [==============================] - 1s 116us/step
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9474999988079071
10000/10000 [==============================] - 1s 111us/step
accuracy: 0.9515000003576278
10000/10000 [==============================] - 1s 114us/step
accuracy: 0.9288999977707862
10000/10000 [==============================] - 1s 115us/step
accuracy: 0.9487999993562698

关于“Keras构建RNN网络训练如何实现”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145