pred_y = test_output.data.numpy() pred_y = pred_y.flatten() print(pred_y, 'prediction number') print(test_y[:355].numpy(), 'real number') import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') plt.figure() f, axes = plt.subplots(1, 1) x = np.arange(1, 356) # axes.plot(x , pred_y) axes.scatter(x,pred_y, c='r', marker = 'o') plt.axhline(36.7, c ='g') axes.set_xlabel("位置点位") axes.set_ylabel("预测值") axes.set_title("矫正网络结果") plt.savefig("result.png") plt.show()
离散图画法如上所示。
import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') plt.figure() f, axes = plt.subplots(1, 1) x = np.arange(1, 356) # axes.plot(x , pred_y) axes.scatter(x, pred_y, c='r', marker = 'o') plt.axhline(36.7, c ='g') axes.set_xlabel("位置点位") axes.set_ylabel("预测值") axes.set_title("矫正网络预测结果") axes.set_ylim((36, 37)) plt.savefig("result.png") plt.show()
import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') plt.figure() f, axes = plt.subplots(1, 1) x = np.arange(1, 356) # axes.plot(x , pred_y) axes.scatter(x, pred_y, c='r', marker = 'o') plt.axhline(36.7, c ='g') axes.set_xlabel("位置点位") axes.set_ylabel("预测值") axes.set_title("矫正网络预测结果") axes.set_ylim((36, 37)) plt.savefig("result.png") plt.legend(['real', 'predict'], loc='upper left') plt.show()
import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') plt.figure() f, axes = plt.subplots(1, 1) x = np.arange(1, 356) # axes.plot(x , pred_y) axes.scatter(x, pred_y, c='r', s=3, marker = 'o') plt.axhline(36.7, c ='g') axes.set_xlabel("位置点位") axes.set_ylabel("预测值") axes.set_title("矫正网络预测结果") axes.set_ylim((36, 37)) plt.savefig("result.png") plt.legend(['真实值36.7℃', '预测值'], loc='upper left') plt.show()
import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') plt.figure() f, axes = plt.subplots(1, 1) x = np.arange(1, 356) # axes.plot(x , pred_y) axes.scatter(x, pred_y, c='r', s=3, marker = 'o') plt.axhline(36.7, c ='g') axes.set_xlabel("位置点位") axes.set_ylabel("预测值") axes.set_title("矫正网络预测结果") axes.set_ylim((36, 37)) plt.savefig("result.png") plt.legend(['真实值36.7℃', '预测值'], loc='upper left') row_labels = ['准确率:'] col_labels = ['数值'] table_vals = [['{:.2f}%'.format(v*100)]] row_colors = ['gold'] my_table = plt.table(cellText=table_vals, colWidths=[0.1] * 5, rowLabels=row_labels, rowColours=row_colors, loc='best') plt.show()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理