怎么新建MySQL数据库

发布时间:2022-09-08 作者:admin
阅读:841
本篇内容介绍了“SPP的应用有哪些,SPP结构分析是怎样的”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、SPP的应用的背景

在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢?

通常来说,我们有以下几种方法:

(1)对输入进行resize操作,让他们统统变成你设计的层的输入规格那样。但是这样过于暴力直接,可能会丢失很多信息或者多出很多不该有的信息(图片变形等),影响最终的结果。

(2)替换网络中的全连接层,对最后的卷积层使用global average pooling,全局平均池化只和通道数有关,而与特征图大小没有关系

(3)最后一个当然是我们要讲的SPP结构啦~

二、SPP结构分析

SPP结构又被称为空间金字塔池化,能将任意大小的特征图转换成固定大小的特征向量。

接下来我们来详述一下SPP是怎么处理滴~

输入层:首先我们现在有一张任意大小的图片,其大小为w * h。

输出层:21个神经元 -- 即我们待会希望提取到21个特征。

分析如下图所示:分别对1 * 1分块,2 * 2分块和4 * 4子图里分别取每一个框内的max值(即取蓝框框内的最大值),这一步就是作最大池化,这样最后提取出来的特征值(即取出来的最大值)一共有1 * 1 + 2 * 2 + 4 * 4 = 21个。得出的特征再concat在一起。

而在YOLOv5中SPP的结构图如下图所示:

其中,前后各多加一个CBL,中间的kernel size分别为1 * 1,5 * 5,9 * 9和13 * 13。

三、SPPF结构分析

(x,y1这些是啥请看下面的代码)

四、YOLOv5中SPP/SPPF结构源码解析(内含注释分析)

代码注释与上图的SPP结构相对应。

class SPP(nn.Module):
    def __init__(self, c1, c2, k=(5, 9, 13)):#这里5,9,13,就是初始化的kernel size
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)#这里对应第一个CBL
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)#这里对应SPP操作里的最后一个CBL
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        #这里对应SPP核心操作,对5 * 5分块,9 * 9分块和13 * 13子图分别取最大池化
 
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning忽略警告
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
            #torch.cat对应concat

SPPF结构

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
 
    def forward(self, x):
        x = self.cv1(x)#先通过CBL进行通道数的减半
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            #上述两次最大池化
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
            #将原来的x,一次池化后的y1,两次池化后的y2,3次池化的self.m(y2)先进行拼接,然后再CBL

总结


到此这篇关于“SPP的应用有哪些,SPP结构分析是怎样的”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

SPP
二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145