怎么新建MySQL数据库

发布时间:2022-09-01 作者:admin
阅读:282
这篇文章主要介绍“Python中heapq堆排算法的实现是什么样的”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中heapq堆排算法的实现是什么样的”文章能帮助大家解决问题。

一、创建堆

heapq有两种方式创建堆, 一种是使用一个空列表,然后使用heapq.heappush()函数把值加入堆中,另外一种就是使用heap.heapify(list)转换列表成为堆结构

import heapq
# 第一种
"""
函数定义:
heapq.heappush(heap, item)
- Push the value item onto the heap, maintaining the heap invariant.
heapq.heappop(heap)
- Pop and return the smallest item from the heap, maintaining the heap invariant.
If the heap is empty, IndexError is raised. To access the smallest item without popping it, use heap[0].
"""
nums = [2, 3, 5, 1, 54, 23, 132]
heap = []
for num in nums:
heapq.heappush(heap, num) # 加入堆
print(heap[0]) # 如果只是想获取最小值而不是弹出,使用heap[0]
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]
# 第二种
nums = [2, 3, 5, 1, 54, 23, 132]
heapq.heapify(nums)
print([heapq.heappop(heap) for _ in range(len(nums))]) # 堆排序结果
# out: [1, 2, 3, 5, 23, 54, 132]

heapq 模块还有一个​​heapq.merge(*iterables)​​ 方法,用于合并多个排序后的序列成一个排序后的序列, 返回排序后的值的迭代器。

类似于​​sorted(itertools.chain(*iterables))​​,但返回的是可迭代的。

"""
函数定义:
heapq.merge(*iterables)
- Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple log files). Returns an
iterator over the sorted values.
- Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data into memory all at once, and assumes
that each of the input streams is already sorted (smallest to largest).
"""
import heapq
num1 = [32, 3, 5, 34, 54, 23, 132]
num2 = [23, 2, 12, 656, 324, 23, 54]
num1 = sorted(num1)
num2 = sorted(num2)

res = heapq.merge(num1, num2)
print(list(res))

二、访问堆内容

堆创建好后,可以通过`heapq.heappop() 函数弹出堆中最小值。

import heapq
nums = [2, 43, 45, 23, 12]
heapq.heapify(nums)
print(heapq.heappop(nums))
# out: 2
# 如果需要所有堆排序后的元素
result = [heapq.heappop(nums) for _ in range(len(nums))]
print(result)
# out: [12, 23, 43, 45]

如果需要删除堆中最小元素并加入一个元素,可以使用​​heapq.heaprepalce()​​ 函数

import heapq
nums = [1, 2, 4, 5, 3]
heapq.heapify(nums)
heapq.heapreplace(nums, 23)
print([heapq.heappop(nums) for _ in range(len(nums))])
# out: [2, 3, 4, 5, 23]

三、获取堆最大或最小值

如果需要获取堆中最大或最小的范围值,则可以使用​​heapq.nlargest()​​​ 或​​heapq.nsmallest()​​ 函数

"""
函数定义:
heapq.nlargest(n, iterable[, key])¶
- Return a list with the n largest elements from the dataset defined by iterable.
- key if provided, specifies a function of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
- Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
import heapq

nums = [1, 3, 4, 5, 2]
print(heapq.nlargest(3, nums))
print(heapq.nsmallest(3, nums))

"""
输出:
[5, 4, 3]
[1, 2, 3]
"""

这两个函数还接受一个key参数,用于dict或其他数据结构类型使用

import heapq
from pprint import pprint
portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
pprint(cheap)
pprint(expensive)

"""
输出:
[{'name': 'YHOO', 'price': 16.35, 'shares': 45},
{'name': 'FB', 'price': 21.09, 'shares': 200},
{'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50},
{'name': 'ACME', 'price': 115.65, 'shares': 75},
{'name': 'IBM', 'price': 91.1, 'shares': 100}]
"""

四、heapq应用

实现heap堆排序算法:

>>> def heapsort(iterable):
... h = []
... for value in iterable:
... heappush(h, value)
... return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

该算法和​​sorted(iterable)​​ 类似,但是它是不稳定的。

堆的值可以是元组类型,可以实现对带权值的元素进行排序。

>>> h = []
>>> heappush(h, (5, 'write code'))
>>> heappush(h, (7, 'release product'))
>>> heappush(h, (1, 'write spec'))
>>> heappush(h, (3, 'create tests'))
>>> heappop(h)
(1, 'write spec')

以上就是关于“Python中heapq堆排算法的实现是什么样的”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145