怎么新建MySQL数据库

发布时间:2021-05-29 作者:admin
阅读:630

        关于python决策树是比较难理解的内容,为帮助大家理解python决策树的原理和应用,下面给大家分享用python决策树解决问题的实例,感兴趣的朋友可以参考学习。

        一、要求

        二、原理

        决策树是一种类似于流程图的结构,其中每个内部节点代表一个属性上的“测试”,每个分支代表测试的结果,每个叶节点代表一个测试结果。类标签(在计算所有属性后做出的决定)。从根到叶的路径代表分类规则。
        决策树学习的目的是为了产生一棵泛化能力强,即处理未见示例能力强的决策树。因此如何构建决策树,是后续预测的关键!而构建决策树,就需要确定类标签判断的先后,其决定了构建的决策树的性能。决策树的分支节点应该尽可能的属于同一类别,即节点的“纯度”要越来越高,只有这样,才能最佳决策。

        经典的属性划分方法:

  • 信息增益
  • 增益率
  • 基尼指数

        本次实验采用了信息增益,因此下面只对信息增益进行介绍。

        三、信息增益的计算方法

        其中D为样本集合,a为样本集合中的属性,Dv表示D样本集合中a属性为v的样本集合。

        Ent(x)函数是计算信息熵,表示的是样本集合的纯度信息,信息熵的计算方法如下:

        其中pk表示样本中最终结果种类中其中一个类别所占的比例,比如有10个样本,其中5个好,5个不好,则其中p1 = 5/10, p2 = 5/10。一般而言,信息增益越大,则意味着使用属性α来进行划分所获得的“纯度提升”越大,因此在选择属性节点的时候优先选择信息增益高的属性!

        四、实现过程

        本次设计用到了pandas和numpy库,主要利用它们来对数据进行快速的处理和使用。
        首先将数据读入:

        可以看到数据集的标签是瓜的不同的属性,而表格中的数据就是不同属性下的不同的值等。

if(len(set(D.好瓜)) == 1):
        #标记返回 
        return D.好瓜.iloc[0]
    elif((len(A) == 0) or Check(D, A[:-1])):
        #选择D中结果最多的为标记
        cnt = D.groupby('好瓜').size()
        maxValue = cnt[cnt == cnt.max()].index[0]
        return maxValue
    else:
        A1 = copy.deepcopy(A)
        attr = Choose(D, A1[:-1])
        tree = {attr:{}}
        for value in set(D[attr]):
            tree[attr][value] = TreeGen(D[D[attr] == value], A1)
    return tree
 

        TreeGen函数是生成树主函数,通过对它的递归调用,返回下一级树结构(字典)来完成生成决策树。

        在生成树过程中,有二个终止迭代的条件,第一个就是当输入数据源D的所有情况结果都相同,那么将这个结果作为叶节点返回;第二个就是当没有属性可以再往下分,或者D中的样本在A所有属性下面的值都相同,那么就将D的所有情况中结果最多的作为叶节点返回。

        其中Choose(D:pd.DataFrame, A:list)函数是选择标签的函数,其根据输入数据源和剩下的属性列表算出对应标签信息增益,选择能使信息增益最大的标签返回

def Choose(D:pd.DataFrame, A:list):
    result = 0.0
    resultAttr = ''
    for attr in A:
        tmpVal = CalcZengYi(D, attr)
        if(tmpVal > result):
            resultAttr = attr
            result = tmpVal
    A.remove(resultAttr)
    return resultAttr

 

        最后是结果:

{‘纹理': {‘稍糊': {‘触感': {‘硬滑': ‘否', ‘软粘': ‘是'}}, ‘清晰': {‘根蒂': {‘硬挺': ‘否', ‘蜷缩': ‘是', ‘稍蜷': {‘色泽': {‘青绿': ‘是', ‘乌黑': {‘触感': {‘硬滑': ‘是', ‘软粘': ‘否'}}}}}}, ‘模糊': ‘否'}}

        绘图如下:

        五、程序

        主程序

#!/usr/bin/python3
# -*- encoding: utf-8 -*-
'''
@Description:决策树:
@Date     :2021/04/25 15:57:14
@Author      :willpower
@version      :1.0
'''
import pandas as pd
import numpy as np
import treeplot
import copy
import math
"""
@description  :计算熵值
---------
@param  :输入为基本pandas类型dataFrame,其中输入最后一行为实际结果
-------
@Returns  :返回熵值,类型为浮点型
-------
"""
def CalcShang(D:pd.DataFrame):
    setCnt = D.shape[0]
    result = 0.0
    # for i in D.groupby(D.columns[-1]).size().index:
    #遍历每一个值
    for i in set(D[D.columns[-1]]):
        #获取该属性下的某个值的次数
        cnt = D.iloc[:,-1].value_counts()[i]
        result = result + (cnt/setCnt)*math.log(cnt/setCnt, 2)
    return (-1*result)
"""
@description  :计算增益
---------
@param  :输入为DataFrame数据源,然后是需要计算增益的属性值
-------
@Returns  :返回增益值,浮点型
-------
"""
def CalcZengYi(D:pd.DataFrame, attr:str):
    sumShang = CalcShang(D)
    setCnt = D.shape[0]
    result = 0.0
    valus = D.groupby(attr).size()
    for subVal in valus.index:
        result = result + (valus[subVal]/setCnt)*CalcShang(D[D[attr] == subVal])
    return sumShang - result
"""
@description  :选择最佳的属性
---------
@param  :输入为数据源,以及还剩下的属性列表
-------
@Returns  :返回最佳属性
-------
"""
def Choose(D:pd.DataFrame, A:list):
    result = 0.0
    resultAttr = ''
    for attr in A:
        tmpVal = CalcZengYi(D, attr)
        if(tmpVal > result):
            resultAttr = attr
            result = tmpVal
    A.remove(resultAttr)
    return resultAttr
"""
@description  :检查数据在每一个属性下面的值是否相同
---------
@param  :输入为DataFrame以及剩下的属性列表
-------
@Returns  :返回bool值,相同返回1,不同返回0
-------
"""
def Check(D:pd.DataFrame, A:list):
    for i in A:
        if(len(set(D[i])) != 1):
            return 0
    return 1
"""
@description  :生成树主函数
---------
@param  :数据源DataFrame以及所有类型
-------
@Returns  :返回生成的字典树
-------
"""
def TreeGen(D:pd.DataFrame, A:list):
    if(len(set(D.好瓜)) == 1):
        #标记返回 
        return D.好瓜.iloc[0]
    elif((len(A) == 0) or Check(D, A[:-1])):
        #选择D中结果最多的为标记
        cnt = D.groupby('好瓜').size()
        #找到结果最多的结果
        maxValue = cnt[cnt == cnt.max()].index[0]
        return maxValue
    else:
        A1 = copy.deepcopy(A)
        attr = Choose(D, A1[:-1])
        tree = {attr:{}}
        for value in set(D[attr]):
            tree[attr][value] = TreeGen(D[D[attr] == value], A1)
    return tree
"""
@description  :验证集
---------
@param  :输入为待验证的数据(最后一列为真实结果)以及决策树模型
-------
@Returns  :无
-------
"""
def Test(D:pd.DataFrame, model:dict):
    for i in range(D.shape[0]):
            data = D.iloc[i]
            subModel = model
            while(1):
                attr = list(subModel)[0]
                subModel = subModel[attr][data[attr]]
                if(type(subModel).__name__ != 'dict'):
                    print(subModel, end='')
                    break
    print('')
name = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感', '好瓜']
df = pd.read_csv('./savedata.txt', names=name)
# CalcZengYi(df, '色泽')
resultTree = TreeGen(df, name)
print(resultTree)
# print(df[name[:-1]])
Test(df[name[:-1]], resultTree)
treeplot.plot_model(resultTree,"resultTree.gv")
 

        绘图程序

from graphviz import Digraph

def plot_model(tree, name):
    g = Digraph("G", filename=name, format='png', strict=False)
    first_label = list(tree.keys())[0]
    g.node("0", first_label)
    _sub_plot(g, tree, "0")
    g.view()
root = "0"

def _sub_plot(g, tree, inc):
    global root

    first_label = list(tree.keys())[0]
    ts = tree[first_label]
    for i in ts.keys():
        if isinstance(tree[first_label][i], dict):
            root = str(int(root) + 1)
            g.node(root, list(tree[first_label][i].keys())[0])
            g.edge(inc, root, str(i))
            _sub_plot(g, tree[first_label][i], root)
        else:
            root = str(int(root) + 1)
            g.node(root, tree[first_label][i])
            g.edge(inc, root, str(i)) 

        ./savedata.txt

青绿,蜷缩,浊响,清晰,凹陷,硬滑,是
乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,是
乌黑,蜷缩,浊响,清晰,凹陷,硬滑,是
青绿,蜷缩,沉闷,清晰,凹陷,硬滑,是
浅白,蜷缩,浊响,清晰,凹陷,硬滑,是
青绿,稍蜷,浊响,清晰,稍凹,软粘,是
乌黑,稍蜷,浊响,稍糊,稍凹,软粘,是
乌黑,稍蜷,浊响,清晰,稍凹,硬滑,是
乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,否
青绿,硬挺,清脆,清晰,平坦,软粘,否
浅白,硬挺,清脆,模糊,平坦,硬滑,否
浅白,蜷缩,浊响,模糊,平坦,软粘,否
青绿,稍蜷,浊响,稍糊,凹陷,硬滑,否
浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,否
乌黑,稍蜷,浊响,清晰,稍凹,软粘,否
浅白,蜷缩,浊响,模糊,平坦,硬滑,否
青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,否

        六、遇到的问题

        graphviz Not a directory: ‘dot'

        解决办法

        现在大家对于python决策树的原理、使用、注意事项等等应该都有所了解了,上希望大家阅读完这篇文章能有所收获,想要了解更多python决策树的内容,大家可以继续关注其他文章。

文本转载自脚本之家

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145