业务场景:在当前遇到的业务场景中,我们需要启一个间隔任务,这个间隔任务跑一个算法,然后把算法的结果进行一些处理,并入库。任务目前间隔是一小时,算法运行时间要50多分钟,留给结果处理的时间并不多,所以有可能会出现超时。目前来说,优化方向在算法上会更为合理,因为结果处理本来就不用很多时间。但是在这个业务场景下,想要把结果处理的时间进行无限压缩,压缩到0,其实也是可以实现的,说是压缩为0,实际上就是在算法执行完成后,再启一个进程去处理,这样就不会由于需要进行数据处理而影响到算法的运行,将算法和结果处理分为两个独立的进程去处理。在最开始的程序中,是把算法运行和结果处理作为一个周期,而现在是把算法运行和结果处理分为两个周期去处理。
技术实现方案:
启动二个进程,其中一个运行算法,在算法运行结束后,发送一个状态值到另外一个进程,另外一个进程在收到状态量后启动数据处理即可。两个进程间互不影响即可。其实也相当于算法进程控制数据处理进程
测试场景构造代码:
from multiprocessing import Process,Pipe import time import sys import os def send_message(conn): for i in range(1000): print('send_message:%d'%i) print(os.getpid()) conn.send(i) time.sleep(3) def send_message1(conn): # for i in range(1000): print(conn.recv()) while True: if conn.recv() % 5 == 0: print(' today is nice day') time.sleep(1) if __name__ == '__main__': #创建一个进程通信管道 left,right = Pipe() t1 = Process(target=send_message,args=(left,)) t2 = Process(target=send_message1,args=(right,)) t1.start() t2.start()
在这个案例场景下有一些需要注意的点:
业务场景:在当前遇到的业务场景中,我们需要启一个间隔任务,这个间隔任务跑一个算法,然后把算法的结果进行一些处理,并入库。任务目前间隔是一小时,算法运行时间要50多分钟,留给结果处理的时间并不多,所以有可能会出现超时。目前来说,优化方向在算法上会更为合理,因为结果处理本来就不用很多时间。但是在这个业务场景下,想要把结果处理的时间进行无限压缩,压缩到0,其实也是可以实现的,说是压缩为0,实际上就是在算法执行完成后,再启一个进程去处理,这样就不会由于需要进行数据处理而影响到算法的运行,将算法和结果处理分为两个独立的进程去处理。在最开始的程序中,是把算法运行和结果处理作为一个周期,而现在是把算法运行和结果处理分为两个周期去处理。
上面的解决方案中只涉及到了启用两个进程去运行两个任务,并未涉及到启用定时任务框架,所以可能会显得和上述的业务场景不一致,所以在这里重新解决一下。上面也是没有问题的,只是把定时任务框架也作为一个任务去处理即可。然后在定时任务运行完程后,向另外一个进程传入一个参数,作为启动另一个进程的状态量即可。当然,在这里,两个进程还是完全占满的,即处理阻塞状态。对于资源的利用还是没有完全达到最好。后续再考虑使用进程池的方式,看是否可以让其中的一个进程运行完后直接释放资源。
技术解决方案如下:
from multiprocessing import Process,Pipe import time from apscheduler.schedulers.background import BackgroundScheduler from apscheduler.schedulers.blocking import BlockingScheduler from apscheduler.schedulers.asyncio import AsyncIOScheduler # schedule = BackgroundScheduler() schedule = BlockingScheduler(timezone="Asia/Shanghai") # schedule = AsyncIOScheduler(timezone="Asia/Shanghai") def algorithm(conn): print('start_run') conn.send('please run') # time.sleep(5) def worth_result(conn): while True: if conn.recv() == 'please run': print(conn.recv() + ' very nice!') def time_job(conns): schedule.add_job(func=algorithm,trigger='interval',seconds=5,args=(conns,)) schedule.start() if __name__ == '__main__': left,right = Pipe() t1 = Process(target=time_job,args=(left,)) t2 = Process(target=worth_result,args=(right,)) t1.start() t2.start()
在这里还有一些点需要说明,定时任务选择那一种类型其实都没有关系,阻塞和非阻塞其实没有关系,因为我们在这里是直接启了两个进程,每个进程间是相互独立的,并非是在定时任务下启用的两个进程,所以不会影响的。
关于这个解决方案还有的问题:
分布式处理的思想越来越浓。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理