#共有n种图案的印章,每种图案的出现概率相同。小A买了m张印章,求小A集齐n种印章的概率。 n,m=map(int,input().split()) dp=[[0 for i in range(n+1)]for j in range(m+1)] for i in range(1,m+1): for j in range(1,n+1): if(j>i): dp[i][j]=0 elif(j==1): dp[i][j]=pow(1/n,i-1) else: dp[i][j]=(dp[i-1][j])*(j*1.0/n)+(dp[i-1][j-1])*((n-j+1)*1.0/n) print('{:.4f}'.format(dp[m][n]))
这个题我开始想的第一个方法是深搜,因为想着每一个都是选择的问题,没一次的选项都一样,但是发现如果每一次搜索的很多的话很费时间,而且去写代码的时候思路也不是很清晰。
后面按照蓝桥杯的提示说是dp(动规),因此换了方法。
首先按照输入n,m,这里是python蓝桥杯中常用的输入方法:
map(int,input().spilt)
这里的map就是映射,将input().spilt切割后的数都用int函数转换为int型。
*重点(别把上面的i和j和下面的i和j看反了):dp数组就是在初始已知的值中去考虑递进的状态
(1)j>i的情况,即当只买了i张,集赞到对应j张的概率,这是不可能的,因为为0。进行以下初始化
if(j>i): dp[i][j]=0
(2)j=1:的情况,即集赞到j的概率,这种情况下,一张就是需要的那张那个就概率为1/n
(3)其他情况,对于买了i张集赞到对应j张的概率=买了i-1张积攒 j 张的概率*(新的一次再一次选中j张中的一张的概率)+买了i-1张积攒 j-1 张的概率*(选中n张目标图中除去不在目标图j数目中的概率)
dp[i][j]=(dp[i-1][j])*(j*1.0/n)+(dp[i-1][j-1])*((n-j+1)*1.0/n)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理