在python中利用numpy array进行数据处理,经常需要找出符合某些要求的数据位置,有时候还需要对这些位置重新赋值。这里总结了几种找出符合条件数据位置的方法。
这里以一个8*8的随机数组举例,来找出大于零的数。
import numpy as np a = random.randint(-10,10,size=(8,8)) >>> array([[ 5, 5, -7, 7, -8, -7, 0, -8], [ -4, 9, 8, -3, 6, -4, -7, -5], [ 7, 0, 6, 6, -4, -2, -8, 2], [ 6, -5, 8, 4, 7, -8, -4, -4], [ 0, 1, -1, -8, -1, 9, 4, 1], [ 4, -8, -1, -8, -2, -6, -1, 9], [ 7, 7, 9, -9, 4, 8, 3, 1], [ -8, 4, -2, 4, -1, -4, -10, 0]])
location= a[a>0] print(location) >>> array([5, 5, 7, 9, 8, 6, 7, 6, 6, 2, 6, 8, 4, 7, 1, 9, 4, 1, 4, 9, 7, 7, 9, 4, 8, 3, 1, 4, 4]) # 直接输出了大于0的数字 #--------------------------------------------------------------# # 我们可以用下面的方法将小于0的数字都设置为零,留下大于零的数字 b = a.copy() b[b<=0]=0 print(b) >>> [[5 5 0 7 0 0 0 0] [0 9 8 0 6 0 0 0] [7 0 6 6 0 0 0 2] [6 0 8 4 7 0 0 0] [0 1 0 0 0 9 4 1] [4 0 0 0 0 0 0 9] [7 7 9 0 4 8 3 1] [0 4 0 4 0 0 0 0]] # 这就将所有大于零的保留了下来 #--------------------------------------------------------------# #还可以此类推,将大于零的位置都设置成1,可得到大于一的位置 b = a.copy() b[b>0] = 1 b[b<=0] = 0 print(b) >>> [[1 1 0 1 0 0 0 0] [0 1 1 0 1 0 0 0] [1 0 1 1 0 0 0 1] [1 0 1 1 1 0 0 0] [0 1 0 0 0 1 1 1] [1 0 0 0 0 0 0 1] [1 1 1 0 1 1 1 1] [0 1 0 1 0 0 0 0]]
# results = np.where(condition, [x, y]) # 当条件为真时,对应位置返回x中的值,条件不成立则返回y中的值 c = np.where(a>0,a,0) #满足大于0的值保留,不满足的设为0 print(c) >>> [[5 5 0 7 0 0 0 0] [0 9 8 0 6 0 0 0] [7 0 6 6 0 0 0 2] [6 0 8 4 7 0 0 0] [0 1 0 0 0 9 4 1] [4 0 0 0 0 0 0 9] [7 7 9 0 4 8 3 1] [0 4 0 4 0 0 0 0]] # 大于零为1小于零为0 c = np.where(a>0,1,0) #满足大于0的值保留,不满足的设为0 print(c) [[1 1 0 1 0 0 0 0] [0 1 1 0 1 0 0 0] [1 0 1 1 0 0 0 1] [1 0 1 1 1 0 0 0] [0 1 0 0 0 1 1 1] [1 0 0 0 0 0 0 1] [1 1 1 0 1 1 1 1] [0 1 0 1 0 0 0 0]]
a > 0 # 得到判断矩阵 array([[ True, True, False, True, False, False, False, False], [False, True, True, False, True, False, False, False], [ True, False, True, True, False, False, False, True], [ True, False, True, True, True, False, False, False], [False, True, False, False, False, True, True, True], [ True, False, False, False, False, False, False, True], [ True, True, True, False, True, True, True, True], [False, True, False, True, False, False, False, False]], dtype=bool)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理