怎么新建MySQL数据库

发布时间:2022-08-13 作者:admin
阅读:309
这篇文章将为大家详细讲解有关“OpenC如何实现直线检测,代码是什么”的知识,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

1 介绍

本文主要介绍OpenCV自带的直线检测函数HoughLines()的用法,这个函数的第一个参数是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测。第二和第三个值分别代表β 和 θ 的精确度。第四个参数是阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。返回值就是(β; θ)。β 的单位是像素,θ的单位是弧度。

2 代码

#直线检测
#使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成
import cv2 as cv
import numpy as np
import matplotlib.pylab as plt
 
#标准霍夫线变换
def line_detection(image):
    gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
    edges = cv.Canny(gray, 50, 150, apertureSize=3)  #apertureSize参数默认其实就是3
    cv.imshow("edges", edges)
    lines = cv.HoughLines(edges, 1, np.pi/180, 80)
    for line in lines:
        rho, theta = line[0]  #line[0]存储的是点到直线的极径和极角,其中极角是弧度表示的。
        a = np.cos(theta)   #theta是弧度
        b = np.sin(theta)
        x0 = a * rho    #代表x = r * cos(theta)
        y0 = b * rho    #代表y = r * sin(theta)
        x1 = int(x0 + 1000 * (-b)) #计算直线起点横坐标
        y1 = int(y0 + 1000 * a)    #计算起始起点纵坐标
        x2 = int(x0 - 1000 * (-b)) #计算直线终点横坐标
        y2 = int(y0 - 1000 * a)    #计算直线终点纵坐标    注:这里的数值1000给出了画出的线段长度范围大小,数值越小,画出的线段越短,数值越大,画出的线段越长
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)    #点的坐标必须是元组,不能是列表。
    cv.imshow("image-lines", image)
 
#统计概率霍夫线变换
def line_detect_possible_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
    edges = cv.Canny(gray, 50, 150, apertureSize=3)  # apertureSize参数默认其实就是3
    lines = cv.HoughLinesP(edges, 1, np.pi / 180, 60, minLineLength=60, maxLineGap=5)
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv.imshow("line_detect_possible_demo",image)
 
src = cv.imread(r'..edge.jpg')
print(src.shape)
cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
cv.imshow('input_image', src)
line_detection(src)
src = cv.imread(r'..edge.jpg') #调用上一个函数后,会把传入的src数组改变,所以调用下一个函数时,要重新读取图片
line_detect_possible_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()

3 效果


以上就是关于“OpenC如何实现直线检测,代码是什么”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145