序列化把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening。
使用json序列化能够达到跨平台传输数据的目的。
跨平台性质,它可以序列化dict/list/str/int/float/bool/None数据类型。
序列化成json文本格式。
Json类型<——>Python类型
(2)序列化
(2)反序列化
import json struct_data = {'name': 'json', 'age': 23, 'sex': 'male'} print(struct_data, type(struct_data)) # {'name': 'json', 'age': 23, 'sex': 'male'} # 序列化 data = json.dumps(struct_data) print(data, type(data)) # {"name": "json", "age": 23, "sex": "male"} # 反序列化 data = json.loads(data) print(data, type(data)) # {'name': 'json', 'age': 23, 'sex': 'male'}
磁盘文件操作
import json # 序列化,写入磁盘 with open('Json序列化对象.json', 'w') as fw: json.dump(struct_data, fw) # 从文件读取,反序列化 with open('Json序列化对象.json') as fr: data = json.load(fr) print(data) # {'name': 'json', 'age': 23, 'sex': 'male'}
pickle无法跨平台,序列化之后只有python识别。但是可以序列化Python的任意数据类型,包括函数和对象。
Json模块和picle模块都有 dumps、dump、loads、load四种方法,而且用法一样。但是序列化成二进制形式。
import pickle struct_data = {'name': 'json', 'age': 23, 'sex': 'male'} print(struct_data, type(struct_data)) # {'name': 'json', 'age': 23, 'sex': 'male'} data = pickle.dumps(struct_data) print(data, type( data)) # b'\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x04\x00\x00\x00jsonq\x02X\x03\x00\x00\x00ageq\x03K\x17X\x03\x00\x00\x00sexq\x04X\x04\x00\x00\x00maleq\x05u.' data = pickle.loads(data) print(data, type(data)) # {'name': 'json', 'age': 23, 'sex': 'male'} 'dict'> # 序列化(注意:pickle模块需要使用二进制存储,即'wb'模式存储) with open('Pickle序列化对象.pkl', 'wb') as fw: pickle.dump(struct_data, fw) # 反序列化 with open('Pickle序列化对象.pkl', 'rb') as fr: pickle = pickle.load(fr) print(data) # {'name': 'json', 'age': 23, 'sex': 'male'}
str = 'Hello World' # 加密前,原始数据 a = base64.b64encode(pickle.dumps(str)).decode() # 加密 print(a) # gANYCwAAAEhlbGxvIFdvcmxkcQAu b = pickle.loads(base64.b64decode(a.encode())) # 解密 print(b)。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理