怎么新建MySQL数据库

发布时间:2022-08-12 作者:admin
阅读:388
这篇文章主要讲解了“OpenCV凸包和凸缺陷的定义是什么”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。

1、凸包检测与凸缺陷定义

凸包是将最外层的点连接起来构成的凸多边形,它能包含点击中所有的点。物体的凸包检测常应用在物体识别、手势识别及边界检测等领域。

凸包检测常常用在轮廓分析之后。对二值图像进行轮廓分析之后,可以构建每个轮廓的凸包,构建完成之后会返回该凸包包含的点集。根据返回的凸包点集可以绘制该轮廓对应的凸包。一般来说,凸性曲线总是凸出来的,至少是平的。如果有地方凹进去了就被叫做凸性缺陷。

下图可以更加直接的了解凸包和凸缺陷的定义:

2、opencv相关实现函数

OpenCV中提供了函数convexHull 用于对物体轮廓凸包进行检测,函数convexityDefect进行凸缺陷的检测。首先来了解一下各参数意义:

hull = cv2.convexHull(points, clockwise, returnpoints)

各参数意义: 

points:输入的轮廓点集 

clockwise:方向标志,如果设置为True,输出的凸包是顺时针方向的,否则为逆时针方向。 

returnPoints:是否返回点集 

hull : 输出凸包结果,当参数returnPoints为ture的时候返回凸包的顶点坐标是个点集、returnPoints为false的是返回与凸包点对应的轮廓上的点对应的index

下面这个函数可以帮助我们找到凸缺陷:

convexityDefects = cv2.convexityDefect(contour, convexhull)

注意:

进行凸检测时,凸包检测中的returnPoints要设置为False 

凸缺陷返回一个数组,每一行包含值是起点,终点,最远的点,到最远点的近似距离,返回的前三个点都是轮廓索引。

contour: 检测到的轮廓,可以调用findContours函数得到 

convexhull:检测到的凸包,可以调用convexHull函数得到。 

convexityDefects:输出参数,检测到的最终结果,返回一个数组,其中每一行包含的值是[起点,终点,最远的点,到最远点的近似距离]。前三个点都是轮廓索引。 

前三个值得含义分别为:凸缺陷的起始点,凸缺陷的终点,凸缺陷的最深点(即边缘点到凸包距离最大点)

3、代码实践

我们可以在一张图上显示轮廓的凸包和凸缺陷。

我们将起点和终点用一条红线 连接,在最远点画一个蓝色的圆圈,要记住的是返回结果的前三个值是轮廓点的索引。 所以我们还要到轮廓点中去找它们。

前三个值得含义分别为:凸缺陷的起始点,凸缺陷的终点,凸缺陷的最深点(即边缘点到凸包距离最大点)。

凸包检测和凸缺陷检测的代码如下:

# 凸包检测和凸缺陷
import cv2 as cv
# 读取图像
src1 = cv.imread("000.jpg")
# 转换为灰度图像
gray = cv.cvtColor(src1, cv.COLOR_BGR2GRAY)
# 二值化
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
# 获取结构元素
k = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
# 开操作
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, k)
# 轮廓发现
contours, hierarchy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# 在原图上绘制轮廓,以方便和凸包对比,发现凸缺陷
cv.drawContours(src1, contours, -1, (0, 225, 0), 3)
for c in range(len(contours)):
    # 是否为凸包
    ret = cv.isContourConvex(contours[c])
    # 凸缺陷
    # 凸包检测,returnPoints为false的是返回与凸包点对应的轮廓上的点对应的index
    hull = cv.convexHull(contours[c], returnPoints=False)
    defects = cv.convexityDefects(contours[c], hull)
    print('defects', defects)
    for j in range(defects.shape[0]):
        s, e, f, d = defects[j, 0]
        start = tuple(contours[c][s][0])
        end = tuple(contours[c][e][0])
        far = tuple(contours[c][f][0])
        # 用红色连接凸缺陷的起始点和终止点
        cv.line(src1, start, end, (0, 0, 225), 2)
        # 用蓝色最远点画一个圆圈
        cv.circle(src1, far, 5, (225, 0, 0), -1)
# 显示
cv.imshow("result", src1)
cv.waitKey(0)
cv.destroyAllWindows()

凸缺陷的部分输出:前三个为凸缺陷的起始点,凸缺陷的终点,凸缺陷的最深点(即边缘点到凸包距离最大点)。凸包检测输出的也是轮廓上的点的索引。

凸缺陷检测的效果图: 

红色为凸包,蓝色点为凸缺陷的最深点(即边缘点到凸包距离最大点),绿色是轮廓。红色与绿色之间的区域即为凸缺陷。

4、总结

(1)cv2.convexityDefect函数进行凸缺陷检测时,凸包检测函数中cv2.convexHull中的returnPoints要设置为False,返回轮廓中与凸包点对应的轮廓点的index。

(2)cv2.convexityDefect函数的返回值是一系列数组,[凸缺陷的起点,凸缺陷的终点,凸缺陷的最深的点,到最远点的近似距离],前三个是索引值,终点和起点连接即得到凸包。

(3)凸缺陷的最深的点:即边缘点到凸包距离最大点到最远点的近似距离:边缘点到凸包的最大距离。

(4)利用凸包检测可以得到进一步的轮廓信息,可进行边界检测,结合凸缺陷可以实现手势识别和物体识别。


这篇关于“OpenCV凸包和凸缺陷的定义是什么”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145