怎么新建MySQL数据库

发布时间:2022-08-09 作者:admin
阅读:631
这篇文章主要讲解了“pandas中replace用法是怎样,有哪些实例”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“pandas中replace用法是怎样,有哪些实例”吧!

   

   

1. pandas.replace()介绍

pandas.Series.replace 官方文档

Series.replace(to_replace=None, value=NoDefault.no_default, inplace=False, limit=None, regex=False, method=NoDefault.no_default)

  • to_replace: 需要替换的值
  • value:替换后的值
  • inplace: 是否在原数据表上更改,默认 inplace=False
  • limit:向前或向后填充的最大尺寸间隙,用于填充缺失值
  • regex: 是否模糊查询,用于正则表达式查找,默认 regex=False
  • method: 填充方式,用于填充缺失值(The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None.)
    • pad: 向前填充
    • ffill: 向前填充
    • bfill: 向后填充

Example

2. 单值替换

2.1 全局替换

df.replace(1, 10)

2.2 选定条件替换

df['attr_1'].replace('场景.季节.冬天', '冬天', inplace=True)

3. 多值替换

3.1 多个值替换同一个值

df.replace([3, 11, 137], 4)

3.2 多个值替换不同值

列表List

df.replace([3, 11, 137, 1], [1, 111, 731, 10])

字典映射

# 修改不同列
df.replace({'场景.普通运动.跑步':'跑步', 11:100})

# 修改同一列
df.replace({'attr_1':{'场景.普通运动.跑步':'跑步', '场景.户外休闲.爬山':'爬山'}})

4. 模糊查询替换

df.replace('场景.','', regex=True)
df.replace(regex='场景.', value=' ')

df.replace(regex={'场景.': '', '方案.':''})
df.replace(regex=['场景.', '方案.'], value='')

也可以这样

df['Attr_B'] = df['Attr_B'].str.replace('夹克', '大衣')
df

5. 缺失值替换

5.1 method的用法 (向前/后填充)

Example

向前填充(以他的前一行的值填充)

s.replace(np.nan, method='pad')
s.replace(np.nan, method='ffill')

向后填充(以他的后一行的值填充)

s.replace(np.nan, method='bfill')

5.2 limit的用法 (限制最大填充间隔)

连着多个空值时,limit为几填充几个

Example

s.replace(np.nan, method='ffill', limit=1)

s.replace(np.nan, method='ffill', limit=2)

补充:使用实例代码

#Series对象值替换
s = df.iloc[2]#获取行索引为2数据
#单值替换
s.replace('?',np.nan)#用np.nan替换?
s.replace({'?':'NA'})#用NA替换?
#多值替换
s.replace(['?',r'$'],[np.nan,'NA'])#列表值替换
s.replace({'?':np.nan,'$':'NA'})#字典映射
#同缺失值填充方法类似
s.replace(['?','$'],method='pad')#向前填充
s.replace(['?','$'],method='ffill')#向前填充
s.replace(['?','$'],method='bfill')#向后填充
#limit参数控制填充次数
s.replace(['?','$'],method='bfill',limit=1)
#DataFrame对象值替换
#单值替换
df.replace('?',np.nan)#用np.nan替换?
df.replace({'?':'NA'})#用NA替换?
#按列指定单值替换
df.replace({'EMPNO':'?'},np.nan)#用np.nan替换EMPNO列中?
df.replace({'EMPNO':'?','ENAME':'.'},np.nan)#用np.nan替换EMPNO列中?和ENAME中.
#多值替换
df.replace(['?','.','$'],[np.nan,'NA','None'])##用np.nan替换?用NA替换. 用None替换$
df.replace({'?':'NA','$':None})#用NA替换? 用None替换$
df.replace({'?','$'},{'NA',None})#用NA替换? 用None替换$
#正则替换
df.replace(r'\?|\.|\$',np.nan,regex=True)#用np.nan替换?或.或$原字符
df.replace([r'\?',r'\$'],np.nan,regex=True)#用np.nan替换?和$
df.replace([r'\?',r'\$'],[np.nan,'NA'],regex=True)#用np.nan替换?用NA替换$符号
df.replace(regex={r'\?':None})
#value参数显示传递
df.replace(regex=[r'\?|\.|\$'],value=np.nan)#用np.nan替换?或.或$原字符

总结 


现在大家对于pandas中replace用法是怎样,有哪些实例的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注群英网络,群英网络将为大家推送更多相关的文章。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145