怎么新建MySQL数据库

发布时间:2022-08-03 作者:admin
阅读:552
今天这篇我们来学习和了解“如何使用Matplotlib库实现正弦函数与余弦函数”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“如何使用Matplotlib库实现正弦函数与余弦函数”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!

前言

Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索使用matplotlib 库实现简单的图形绘制。

一、简单的正弦函数与余弦函数

是取得正弦函数和余弦函数的值:

X 是一个 numpy 数组,包含了从 −π 到 +π 等间隔的 256 个值。C 和 S 则分别是这 256 个值对应的余弦和正弦函数值组成的 numpy 数组。

X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C,S = np.cos(X), np.sin(X)

 完整代码如下

import numpy as np
import matplotlib.pyplot as plt
 
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
#绘制并显示图形
plt.plot(X, C)
plt.plot(X, S)
 
plt.show()

二、进阶版正弦函数与余弦函数

上面我们学习了简单的正弦函数与余弦函数,接下来我们将精益求精,改变颜色与粗细,设置记号,调整边框等。

1.改变颜色与粗细

我们以蓝色和红色分别表示余弦和正弦函数,而后将线条变粗一点。接下来,我们在水平方向拉伸一下整个图。

代码如下(示例):

figure(figsize=(10, 6), dpi=80)
plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plot(X, S, color="red",  linewidth=2.5, linestyle="-")

2.设置图片边界

代码如下(示例):

xmin, xmax = X.min(), X.max()
dx = (xmax - xmin) * 0.2
xlim(xmin - dx, xmax + dx)

3.设置记号

我们讨论正弦和余弦函数的时候,通常希望知道函数在 ±π 和 ±π2 的值。

xticks( [-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
yticks([-1, 0, +1])

4.设置记号的标签

我们可以把 3.142 当做是 π,但毕竟不够精确。当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。

xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
       [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
 
yticks([-1, 0, +1],
       [r'$-1$', r'$0$', r'$+1$'])

5.设置X,Y轴

ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

6.完整代码

# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
from pylab import *
 
# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure(figsize=(8, 6), dpi=80)
 
# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot(1, 1, 1)
 
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
 
# 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
plot(X, C, color="blue", linewidth=1.0, linestyle="-")
 
# 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
plot(X, S, color="green", linewidth=1.0, linestyle="-")
 
# 设置横轴的上下限
xlim(-4.0, 4.0)
 
# 设置横轴记号
xticks(np.linspace(-4, 4, 9, endpoint=True))
 
# 设置纵轴的上下限
ylim(-1.0, 1.0)
 
# 设置纵轴记号
yticks(np.linspace(-1, 1, 5, endpoint=True))
 
# 以分辨率 72 来保存图片
# savefig("exercice_2.png",dpi=72)
 
# 设置颜色与粗细
figure(figsize=(10, 6), dpi=80)
plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plot(X, S, color="red",  linewidth=2.5, linestyle="-")
# 设置边框
xmin, xmax = X.min(), X.max()
 
dx = (xmax - xmin) * 0.2
 
xlim(xmin - dx, xmax + dx)
# 设置记号
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
yticks([-1, 0, +1])
 
# 设置记号的标签
xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
       [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
 
yticks([-1, 0, +1],
       [r'$-1$', r'$0$', r'$+1$'])
 
# 设置xy轴
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
# 在屏幕上显示
show()

最终效果

三、绘制简单的折线图

折线图是一种将数据点按照顺序连起来的图形,可以体现变量y随变量x的变化情况。Matplotlib 提供了plot()函数绘制折线图,其语法格式如下:

plt.plot(*args, **kwargs)

常用参数及说明如下:

  • x、y:分别表示x轴和y轴对应的数据,接收列表类型参数
  • color:表示折线的颜色
  • marker:表示折线上点的类型,有“.”、“o”、“v”等等类型
  • linestyle:表示折线的类型,默认为“-”,表示实线,设置为“--”表示长虚线,设置为“-.”表示点线,设置为“:”表示点虚线
  • linewidth:表示折线的粗细
  • alpha:表示点的透明度,接收0~1之间的小数

下面我们将以 某地区周一到周日平均温度变化折线图为例,具体的学习了解折线图的绘制。

import matplotlib.pyplot as plt
 
plt.figure(figsize=(10, 8))
# 周一到周日平均温度数据
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10])
plt.show()

效果如下:

我们可以给图表添加一些标签和图例,让图表更加清晰好看,具体方法如下:

  • plt.title():指定当前图表的标题,包括名称、位置、颜色、字体大小等
  • plt.xlabel():指定当前图表x轴的名称、位置、颜色、字体大小等
  • plt.ylabel():指定当前图表y轴的名称、位置、颜色、字体大小等
  • plt.xlim():指定当前图表x轴的范围
  • plt.ylim():指定当前图表y轴的范围
  • plt.xticks():指定当前图表x轴刻度
  • plt.yticks():指定当前图表y轴刻度
import matplotlib.pyplot as plt
 
# 设置支持中文
plt.rcParams['font.family'] = ['SimHei']
plt.figure(figsize=(10, 8))
 
plt.plot([1,2,3,4,5,6,7], [12,11,11,13,12,10,10], linestyle="-", marker=".")
plt.xlabel("时间")
plt.ylabel("温度")
plt.yticks([i for i in range(20)][::5])
 
plt.show()

效果如下:

总结


关于“如何使用Matplotlib库实现正弦函数与余弦函数”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145