怎么新建MySQL数据库

发布时间:2022-08-02 作者:admin
阅读:540
今天就跟大家聊聊有关“DataFrame数据合并的方法有什么,区别在哪”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“DataFrame数据合并的方法有什么,区别在哪”文章能对大家有帮助。


merge()

1.常规合并

①方法1

指定一个参照列,以该列为准,合并其他列。

import pandas as pd

df1 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num1': [120, 101, 104],
                    'num2': [110, 102, 121],
                    'num3': [105, 120, 113]})
df2 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num4': [80, 86, 79]})
print(df1)
print("=======================================")
print(df2)
print("=======================================")
df_merge = pd.merge(df1, df2, on='id')
print(df_merge)

②方法2

要实现该合并,也可以通过索引来合并,即以index列为基准。将left_index 和 right_index 都设置为True
即可。(left_index 和 right_index 都默认为False,left_index表示左表以左表数据的index为基准, right_index表示右表以右表数据的index为基准。)

import pandas as pd

df1 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num1': [120, 101, 104],
                    'num2': [110, 102, 121],
                    'num3': [105, 120, 113]})
df2 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num4': [80, 86, 79]})
print(df1)
print("=======================================")
print(df2)
print("=======================================")

df_merge = pd.merge(df1, df2, left_index=True, right_index=True)
print(df_merge)

相比方法①,区别在于,如图,方法②合并出的数据中有重复列。

重要参数

pd.merge(right,how=‘inner’, on=“None”, left_on=“None”, right_on=“None”, left_index=False, right_index=False )

参数 描述
left 左表,合并对象,DataFrame或Series
right 右表,合并对象,DataFrame或Series
how 合并方式,可以是left(左合并), right(右合并), outer(外合并), inner(内合并)
on 基准列 的列名
left_on 左表基准列列名
right_on 右表基准列列名
left_index 左列是否以index为基准,默认False,否
right_index 右列是否以index为基准,默认False,否

其中,left_index与right_index 不能与 on 同时指定。

合并方式 left right outer inner

准备数据‘

新准备一组数据:

import pandas as pd

df1 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num1': [120, 101, 104],
                    'num2': [110, 102, 121],
                    'num3': [105, 120, 113]})
df2 = pd.DataFrame({'id': ['001', '004', '003'],
                    'num4': [80, 86, 79]})
print(df1)
print("=======================================")
print(df2)
print("=======================================")

inner(默认)

使用来自两个数据集的键的交集

df_merge = pd.merge(df1, df2, on='id')
print(df_merge)

outer

使用来自两个数据集的键的并集

df_merge = pd.merge(df1, df2, on='id', how="outer")
print(df_merge)

left

使用来自左数据集的键

df_merge = pd.merge(df1, df2, on='id', how='left')
print(df_merge)

right

使用来自右数据集的键

df_merge = pd.merge(df1, df2, on='id', how='right')
print(df_merge)

2.多对一合并

import pandas as pd

df1 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num1': [120, 101, 104],
                    'num2': [110, 102, 121],
                    'num3': [105, 120, 113]})
df2 = pd.DataFrame({'id': ['001', '001', '003'],
                    'num4': [80, 86, 79]})
print(df1)
print("=======================================")
print(df2)
print("=======================================")

如图,df2中有重复id1的数据。

合并

df_merge = pd.merge(df1, df2, on='id')
print(df_merge)

合并结果如图所示:

依然按照默认的Inner方式,使用来自两个数据集的键的交集。且重复的键的行会在合并结果中体现为多行。

3.多对多合并

如图表1和表2中都存在多行id重复的。

import pandas as pd
df1 = pd.DataFrame({'id': ['001', '002', '002', '002', '003'],
                    'num1': [120, 101, 104, 114, 123],
                    'num2': [110, 102, 121, 113, 126],
                    'num3': [105, 120, 113, 124, 128]})
df2 = pd.DataFrame({'id': ['001', '001', '002', '003', '001'],
                    'num4': [80, 86, 79, 88, 93]})
print(df1)
print("=======================================")
print(df2)
print("=======================================")

df_merge = pd.merge(df1, df2, on='id')
print(df_merge)

concat()

pd.concat(objs, axis=0, join=‘outer’, ignore_index:bool=False,keys=None,levels=None,names=None, verify_integrity:bool=False,sort:bool=False,copy:bool=True)

参数 描述
objs Series,DataFrame或Panel对象的序列或映射
axis 默认为0,表示列。如果为1则表示行。
join 默认为"outer",也可以为"inner"
ignore_index 默认为False,表示保留索引(不忽略)。设为True则表示忽略索引。

其他重要参数通过实例说明。

1.相同字段的表首位相连

首先准备三组DataFrame数据:

import pandas as pd
df1 = pd.DataFrame({'id': ['001', '002', '003'],
                    'num1': [120, 114, 123],
                    'num2': [110, 102, 121],
                    'num3': [113, 124, 128]})
df2 = pd.DataFrame({'id': ['004', '005'],
                    'num1': [120, 101],
                    'num2': [113, 126],
                    'num3': [105, 128]})
df3 = pd.DataFrame({'id': ['007', '008', '009'],
                    'num1': [120, 101, 125],
                    'num2': [113, 126, 163],
                    'num3': [105, 128, 114]})


print(df1)
print("=======================================")
print(df2)
print("=======================================")
print(df3)

合并

dfs = [df1, df2, df3]
result = pd.concat(dfs)
print(result)

如果想要在合并后,标记一下数据都来自于哪张表或者数据的某类别,则也可以给concat加上 参数keys

result = pd.concat(dfs, keys=['table1', 'table2', 'table3'])
print(result)

此时,添加的keys与原来的index组成元组,共同成为新的index。

print(result.index)

2.横向表合并(行对齐)

准备两组DataFrame数据:

import pandas as pd
df1 = pd.DataFrame({'num1': [120, 114, 123],
                    'num2': [110, 102, 121],
                    'num3': [113, 124, 128]}, index=['001', '002', '003'])
df2 = pd.DataFrame({'num3': [117, 120, 101, 126],
                    'num5': [113, 125, 126, 133],
                    'num6': [105, 130, 128, 128]}, index=['002', '003', '004', '005'])

print(df1)
print("=======================================")
print(df2)

当axis为默认值0时:

result = pd.concat([df1, df2])
print(result)

横向合并需要将axis设置为1

result = pd.concat([df1, df2], axis=1)
print(result)

对比以上输出差异。

  • axis=0时,即默认纵向合并时,如果出现重复的行,则会同时体现在结果中
  • axis=1时,即横向合并时,如果出现重复的列,则会同时体现在结果中。

3.交叉合并

result = pd.concat([df1, df2], axis=1, join='inner')
print(result)

总结


“DataFrame数据合并的方法有什么,区别在哪”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145