引入
from concurrent.futures import ThreadPoolExecutor
一个简单的线程池使用案例
from concurrent.futures import ThreadPoolExecutor import time pool = ThreadPoolExecutor(10, 'Python') def fun(): time.sleep(1) print(1, end='') if __name__ == '__main__': # 列表推导式 [pool.submit(fun) for i in range(20) if True]
from concurrent.futures import ThreadPoolExecutor import time pool = ThreadPoolExecutor(10, 'Python') def fun(arg1,arg2): time.sleep(1) print(arg1, end=' ') print(arg2, end=' ') if __name__ == '__main__': # 列表推导式 [pool.submit(fun,i,i) for i in range(20) if True] # 单个线程的执行 task = pool.submit(fun,'Hello','world') # 判断任务执行状态 print(f'task status {task.done()}') time.sleep(4) print(f'task status {task.done()}') # 获取结果的函数是阻塞的,所以他会等线程结束之后才会输出 print(task.result())
阻塞等待
print(task.result())
批量获取结果
for future in as_completed(all_task): data = future.result()
阻塞主线程,等待执行结束再执行下一个业务
# 等待线程全部执行完毕 wait(pool.submit(fun,1,2),return_when=ALL_COMPLETED) print('')
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理