import torch print(torch.cuda.current_device()) print(torch.cuda.device_count()) print(torch.cuda.get_device_name()) print(torch.cuda.is_available())
打开terminal输入nvidia-smi可以看到当前各个显卡及用户使用状况,如下图所示,使用kill -9 pid(需替换成具体的编号)即可杀掉占用资源的程序,杀完后结果如下图所示,可以发现再也没有对应自己的程序了!
补充一下师弟帮忙的记录截图,方便以后查询使用:
补充:如何处理Pytorch使用GPU后仍有GPU资源未释放的情况
使用PyTorch设置多线程(threads)进行数据读取(DataLoader),其实是假的多线程,他是开了N个子进程(PID都连着)进行模拟多线程工作,所以你的程序跑完或者中途kill掉主进程的话,子进程的GPU显存并不会被释放,需要手动一个一个kill才行
1.先关闭ssh(或者shell)窗口,退出重新登录
2.查看运行在gpu上的所有程序:
fuser -v /dev/nvidia*
3.kill掉所有(连号的)僵尸进程
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理