第二种方法通常是在load一个batch数据时, 在collate_fn中进行补齐的.
第一种思路是比较容易想到的, 就是对一个batch的样本进行遍历, 然后使用np.pad对每一个样本进行补齐.
for unit in data: mask = np.zeros(max_length) s_len = len(unit[0]) # calculate the length of sequence in each unit mask[: s_len] = 1 unit[0] = np.pad(unit[0], (0, max_length - s_len), 'constant', constant_values=(0, 0)) mask_batch.append(mask)
但是这种方法在batch size很大的情况下会很慢, 因为使用for循环进行了遍历. 我在实际用的时候, 当batch_size=128时, 一个batch的加载时间甚至是一个batch训练时间的几倍!
因此, 我想到如何并行地对序列进行补齐. 第二种方法的思路就是使用torch中自带的pad_sequence来并行补齐.
batch_sequence = list(map(lambda x: torch.tensor(x[findex]), x_data)) batch_data[feat] = torch.nn.utils.rnn.pad_sequence(batch_sequence).T
可以看到这里使用pad_sequence一次性对整个batch进行补齐. 下面对这个函数进行详细说明.
from torch.utils.rnn import pad_sequence a = torch.ones(10) b = torch.ones(6) c = torch.ones(20) abc = pad_sequence([a,b,c]) # shape(20, 3)
注意这个函数接收的是一个元素为tensor的列表, 而不是tensor.
最终, 这个函数会将所有tensor转换为tensor矩阵#shape(max_length, batch_size). 因此, 在使用完后通常还需要转置一下.
补充:PyTorch中用于RNN变长序列填充函数的简单使用
RNN在处理变长序列时有它的优势。在分批处理变长序列问题时,每个序列的长度往往不会完全相等,因此针对一个batch中序列长度不一的情况,需要对某些序列进行PAD(填充)操作,使得一个batch内的序列长度相等。
PyTorch中的pack_padded_sequence和pad_packed_sequence可处理上述问题,以下用一个示例演示这两个函数的简单使用方法。
“压缩”函数:用于将填充后的序列tensor进行压缩,方便RNN处理
pack_padded_sequence(input, lengths, batch_first=False, enforce_sorted=True)
(1)input->被“压缩”的tensor,维度一般为[batch_size,_max_seq_len[,embedding_size]]或者[max_seq_len,batch_size[,embedding_size]]
若input维度为:[batch_size,_max_seq_len[,embedding_size]]
要将batch_first设置为True,这表示input的第一个维度为batch的数量
若input维度为:[max_seq_len,batch_size[,embedding_size]]
要将batch_first设置为False(默认值),这表示input的第一个维度不是batch的数量
(2)lengths->lengths参数表示一个batch中序列真实长度,类型为列表,在例子中详细说明
(3)batch_first->表示batch的数量是否在input的第一维度,默认值为False
(4)enforce_sorted->input中的会自动按照lengths的情况进行排序,默认值为
“解压”函数:该函数与"压缩函数"相对应,经“压缩函数”处理的输入经过RNN得到的最终结果可以利用该函数进行“解压”
pad_packed_sequence(sequence, batch_first=False, padding_value=0.0, total_length=None):
(1)sequence->压缩函数处理过的input经RNN后得到的结果
(2)batch_first->与“压缩”函数中的batch_first一致
(3)padding_value->序列进行填充时使用的索引,默认为0
(4)total_length->暂略
代码如下(示例):
# Create by leslie_miao on 2020/11/1 import torch import torch.nn as nn d_model = 10 # 词嵌入的维度 hidden_size = 20 # lstm隐藏层单元数量 layer_num = 1 # lstm层数 # 输入inputs,维度为[batch_size,max_seq_len]=[3,4],其中0代表填充 # 该input包含3个序列,每个序列的真实长度分别为: 4 3 2 inputs = torch.tensor([[1,2,3,4],[1,2,3,0],[1,2,0,0]]) embedding = nn.Embedding(5,d_model) # 获取词嵌入后的inputs 当前inputs的维度为[batch_size,max_seq_len,d_model]=[3,4,10] inputs = embedding(inputs) # 查看inputs的维度 print(inputs.size()) # print: torch.Size([3, 4, 10]) # 利用“压缩”函数对inputs进行压缩处理,[4,3,2]分别为inputs中序列的真实长度,batch_first=True表示inputs的第一维是batch_size inputs = nn.utils.rnn.pack_padded_sequence(inputs,lengths=[4,3,2],batch_first=True) # 查看经“压缩”函数处理过的inputs的维度 print(inputs[0].size()) # print: torch.Size([9, 10]) # 定义RNN网络 network = nn.LSTM(input_size=d_model,hidden_size=hidden_size,batch_first=True,num_layers=layer_num) # 初始化RNN相关门参数 c_0 = torch.zeros((layer_num,3,hidden_size)) h_0 = torch.zeros((layer_num,3,hidden_size)) # [rnn层数,batch_size,hidden_size] # inputs经过RNN网络后得到的结果outputs output,(h_n,c_n) = network(inputs,(h_0,c_0)) #查看未经“解压函数”处理的outputs维度 print(output[0].size()) # print: torch.Size([9, 20]) # 利用“解压函数”对outputs进行解压操作,其中batch_first设置与“压缩函数相同”,padding_value为0 output = nn.utils.rnn.pad_packed_sequence(output,batch_first=True,padding_value=0) # 查看经“解压函数”处理的outputs维度 print(output[0].size()) # print:torch.Size([3, 4, 20])
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理