将以下内容保存为文件 people.csv
。
id,姓名,性别,出生日期,出生地,职业,爱好 1,张小三,m,1992-10-03,北京,工程师,足球 2,李云义,m,1995-02-12,上海,程序员,读书 下棋 3,周娟,女,1998-03-25,合肥,护士,音乐,跑步 4,赵盈盈,Female,2001-6-32,,学生,画画 5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治
如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:
文件编码格式是最容易出错的问题之一。如果编码格式不正确,就会完全读取不出文件内容,出现类似于以下的错误, 让人完全不知所措:
--------------------------------------------------------------------------- UnicodeDecodeError Traceback (most recent call last) <ipython-input-6-8659adefcfa6> in <module> ----> 1 pd.read_csv('people.csv', encoding='gb2312') C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision) 683 ) 684 --> 685 return _read(filepath_or_buffer, kwds) 686 687 parser_f.__name__ = name C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _read(filepath_or_buffer, kwds) 455 456 # Create the parser. --> 457 parser = TextFileReader(fp_or_buf, **kwds) 458 459 if chunksize or iterator: C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, f, engine, **kwds) 893 self.options["has_index_names"] = kwds["has_index_names"] 894 --> 895 self._make_engine(self.engine) 896 897 def close(self): C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in _make_engine(self, engine) 1133 def _make_engine(self, engine="c"): 1134 if engine == "c": -> 1135 self._engine = CParserWrapper(self.f, **self.options) 1136 else: 1137 if engine == "python": C:\ProgramData\Anaconda3\lib\site-packages\pandas\io\parsers.py in __init__(self, src, **kwds) 1915 kwds["usecols"] = self.usecols 1916 -> 1917 self._reader = parsers.TextReader(src, **kwds) 1918 self.unnamed_cols = self._reader.unnamed_cols 1919 pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__() pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._get_header() UnicodeDecodeError: 'gb2312' codec can't decode byte 0x93 in position 2: illegal multibyte sequence
目前对于中文而言,最常使用的有 utf-8
和 gb2312
两种格式,只需要指定正确的编码。在不知道编码的情况下,只需要尝试两次即可。padas默认的文件编码格式是 utf-8
,所以如果出现以上错误,只需使用 encoding=gb2312
再尝试一下即可,如 pd.read_csv(file, encoding='gb2312')
。
空值是csv中也非常常见,比如以下内容:
import pandas as pd df = pd.read_csv('people.csv') v1=df['出生地'][3] print(v1, type(v1))
输出为:
nan <class 'float'>
由此可见,空值也是有数据类型的,为 float
类型。
如何判断空值有两种方法,可以使用 math.isnan(x)
也可以使用 isinstance(float)
。我们知道,DateFrame对象是包括Series对象,而在一个Series对象中,所有的数据类型默认是一样的,所以如果其数据类型推断为字符串(str),那么直接使用 math.isnan(x) 则会报错 TypeError: must be real number, not str
错误,即必需为实数,不能是字符串。所以,这时我们还需要使用 isinstance(x, flaot)
方法。
具体请看这个示例:
df.出生地=df.出生地.map(lambda x: '其他' if isinstance(x, float) else x) df
方法1:直接使用labmda表达式
需要对数据列进行复杂操作的时候,我们可以使用以下函数时行相应的操作。
df=df.fillna('未知') df.爱好=df.爱好.map(lambda x: x.split(' ')[0].split('-')[0].split(',')[0]) df
方法二:使用自定义函数
在进行映射时,如果操作比较简单,可以使用字典的方式进行数值映射映射(参见下文)。但是如果操作比较复杂,则需要使用函数进行映射。请看这个示例,读取到性别时,内容有 ‘m', ‘M', ‘Female' 等内容,现在需要其全部转换为 男
或 女
:
def set_sex(s): if s.lower() == 'm' or s.lower() == 'male': return '男' elif s.lower() == 'female': return '女' return s df = pd.read_csv('people.csv', converters={'性别': lambda x : set_sex(x)}) df
方法三:使用数值字典映射
在数据处理时,数值型往往比字符串效率更高,所以在可能的情况下,我们希望将数据转换成字符串处理。请看这个示例,将输入的数据的性别中的男性转换为1 女性转换为0。操作如下:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理