怎么新建MySQL数据库

发布时间:2022-07-21 作者:admin
阅读:276
这篇文章主要介绍“Python中Tuple有何特点,怎么声明使用”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中Tuple有何特点,怎么声明使用”文章能帮助大家解决问题。

元组

Python中的元组容器序列(tuple)与列表容器序列(list)具有极大的相似之处,因此也常被称为不可变的列表。

但是两者之间也有很多的差距,元组侧重于数据的展示,而列表侧重于数据的存储与操作。

它们非常相似,虽然都可以存储任意类型的数据,但是一个元组定义好之后就不能够再进行修改。

元组特性

元组的特点:

  • 元组属于容器序列
  • 元组属于不可变类型
  • 元组底层由顺序存储组成,而顺序存储是线性结构的一种

基本声明

以下是使用类实例化的形式进行对象声明:

tup = tuple((1, 2, 3, 4, 5))
print("值:%r,类型:%r" % (tup, type(tup)))

# 值:(1, 2, 3, 4, 5),类型:<class 'tuple'>

也可以选择使用更方便的字面量形式进行对象声明,使用逗号对数据项之间进行分割:

tup = 1, 2, 3, 4, 5
print("值:%r,类型:%r" % (tup, type(tup)))

# 值:(1, 2, 3, 4, 5),类型:<class 'tuple'>

为了美观,我们一般会在两侧加上(),但是要确定一点,元组定义是逗号分隔的数据项,而并非是()包裹的数据项:

tup = (1, 2, 3, 4, 5)
print("值:%r,类型:%r" % (tup, type(tup)))

# 值:(1, 2, 3, 4, 5),类型:<class 'tuple'>

多维元组

当一个元组中嵌套另一个元组,该元组就可以称为多维元组。

如下,定义一个2维元组:

tup = (1, 2, 3, 4, 5)
print("值:%r,类型:%r" % (tup, type(tup)))

# 值:(1, 2, 3, 4, 5),类型:<class 'tuple'>

续行操作

在Python中,元组中的数据项如果过多,可能会导致整个元组太长,太长的元组是不符合PEP8规范的。

每行最大的字符数不可超过79,文档字符或者注释每行不可超过72

Python虽然提供了续行符\,但是在元组中可以忽略续行符,如下所示:

tup = (1, 2, ("三", "四"))
print("值:%r,类型:%r" % (tup, type(tup)))

# 值:(1, 2, ('三', '四')),类型:<class 'tuple'>

类型转换

元组支持与布尔型、字符串、列表、以及集合类型进行类型转换:

tup = (1, 2, 3)
bTup = bool(tup)    # 布尔类型
strTup = str(tup)   # 字符串类型
liTup = list(tup)   # 列表类型
setTup = set(tup)   # 集合类型

print("值:%r,类型:%r" % (bTup, type(bTup)))
print("值:%r,类型:%r" % (strTup, type(strTup)))
print("值:%r,类型:%r" % (liTup, type(liTup)))
print("值:%r,类型:%r" % (setTup, type(setTup)))

# 值:True,类型:<class 'bool'>
# 值:'(1, 2, 3)',类型:<class 'str'>
# 值:[1, 2, 3],类型:<class 'list'>
# 值:{1, 2, 3},类型:<class 'set'>

如果一个2维元组遵循一定的规律,那么也可以将其转换为字典类型:

tup = (("k1", "v1"), ("k2", "v2"), ("k3", "v3"))
dictTuple = dict(tup)

print("值:%r,类型:%r" % (dictTuple, type(dictTuple)))

# 值:{'k1': 'v1', 'k2': 'v2', 'k3': 'v3'},类型:<class 'dict'>

索引操作

元组的索引操作仅支持获取数据项。

其他的任意索引操作均不被支持。

使用方法参照列表的索引切片一节。

绝对引用

元组拥有绝对引用的特性,无论是深拷贝还是浅拷贝,都不会获得其副本,而是直接对源对象进行引用。

但是列表没有绝对引用的特性,代码验证如下:

>>> import copy
>>> # 列表的深浅拷贝均创建新列表...
>>> oldLi = [1, 2, 3]
>>> id(oldLi)
4542649096
>>> li1 = copy.copy(oldLi)
>>> id(li1)
4542648840
>>> li2 = copy.deepcopy(oldLi)
>>> id(li2)
4542651208
>>> # 元组的深浅拷贝始终引用老元组
>>> oldTup = (1, 2, 3)
>>> id(oldTup)
4542652920
>>> tup1 = copy.copy(oldTup)
>>> id(tup1)
4542652920
>>> tup2 = copy.deepcopy(oldTup)
>>> id(tup2)
4542652920

Python为何要这样设计?其实仔细想想不难发现,元组不能对其进行操作,仅能获取数据项。

那么也就没有生成多个副本提供给开发人员操作的必要了,因为你修改不了元组,索性直接使用绝对引用策略。

值得注意的一点:[:]也是浅拷贝,故对元组来说属于绝对引用范畴。

元组的陷阱

Leonardo Rochael在2013年的Python巴西会议提出了一个非常具有思考意义的问题。

我们先来看一下:

>>> t = (1, 2, [30, 40])
>>> t[-1] += [50, 60]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

现在,t到底会发生下面4种情况中的哪一种?

  1. t 变成 (1, 2, [30, 40, 50, 60])。
  2. 因为 tuple 不支持对它的数据项赋值,所以会抛出 TypeError 异常。
  3. 以上两个都不是。a 和 b 都是对的。

正确答案是4,t确实会变成 (1, 2, [30, 40, 50, 60]),但同时元组是不可变类型故会引发TypeError异常的出现。

>>> t
(1, 2, [30, 40, 50, 60])

如果是使用extend()对t[-1]的列表进行数据项的增加,则答案会变成1。

我当初在看了这个问题后,暗自告诉自己了2件事情:

  • list的数据项增加尽量不要使用+=,而应该使用append()或者extend()

Ps:我也不知道自己为什么会产生这样的想法,但这个想法确实伴随我很长时间,直至现在

  • tuple中不要存放可变类型的数据,如list、set、dict等..

元组更多的作用是展示数据,而不是操作数据。

举个例子,当用户根据某个操作获取到了众多数据项之后,你可以将这些数据项做出元组并返回。

用户对被返回的原对象只能看,不能修改,若想修改则必须创建新其他类型对象。

解构方法

元组的解构方法与列表使用相同。

使用方法参照列表的解构方法一节。

常用方法

方法一览

常用的list方法一览表:

方法名 返回值 描述
count() integer 返回数据项在T中出现的次数
index() integer 返回第一个数据项在T中出现位置的索引,若值不存在,则抛出ValueError

基础公用函数:

函数名 返回值 描述
len() integer 返回容器中的项目数
enumerate() iterator for index, value of iterable 返回一个可迭代对象,其中以小元组的形式包裹数据项与正向索引的对应关系
reversed() ... 详情参见函数章节
sorted() ... 详情参见函数章节

获取长度

使用len()方法来获取元组的长度。

返回int类型的值。

tup = ("A", "B", "C", "D", "E", "F", "G")

print(len(tup))

# 7

Python在对内置的数据类型使用len()方法时,实际上是会直接的从PyVarObject结构体中获取ob_size属性,这是一种非常高效的策略。

PyVarObject是表示内存中长度可变的内置对象的C语言结构体。

直接读取这个值比调用一个方法要快很多。

统计次数

使用count()方法统计数据项在该元组中出现的次数。

返回int:

tup = ("A", "B", "C", "D", "E", "F", "G", "A")

aInTupCount = tup.count("A")

print(aInTupCount)

# 2

查找位置

使用index()方法找到数据项在当前元组中首次出现的位置索引值,如数据项不存在则抛出异常。

返回int。

tup = ("A", "B", "C", "D", "E", "F", "G", "A")

aInTupIndex = tup.index("A")

print(aInTupIndex)

# 0

底层探究

内存开辟

Python内部实现中,列表和元组还是有一定的差别的。

元组在创建对象申请内存的时候,内存空间大小便进行了固定,后续不可更改(如果是传入了一个可迭代对象,例如tupe(range(100)),这种情况会进行扩容与缩容,下面的章节将进行探讨研究)。

而列表在创建对象申请内存的时候,内存空间大小不是固定的,如果后续对其新增或删除数据项,列表会进行扩容或者缩容机制。

元组创建

空元组

若创建一个空元组,会直接进行创建,然后将这个空元组丢到缓存free_list中。

元组的free_list最多能缓存 20 * 2000 个元组,这个在下面会进行讲解。

如图所示:

元组转元组

这样的代码会进行元组转元组:

tup = tuple((1, 2, 3))

首先内部本身就是一个元组(1, 2, 3),所以会直接将内部的这个元组拿出来并返回引用,并不会再次创建。

代码验证:

>>> oldTup = (1, 2, 3)
>>> id(oldTup)
4384908128
>>> newTup = tuple(oldTup)
>>> id(newTup)
4384908128
>>>

列表转元组

列表转元组会将列表中的每一个数据项都拿出来,然后放入至元组中:

tup = tuple([1, 2, 3])

所以你会发现,列表和元组中的数据项引用都是相同的:

>>> li1 = ["A", "B", "C"]
>>> tup = tuple(li1)
>>> print(id(li1[0]))
4383760656
>>> print(id(tup[0]))
4383760656
>>>

可迭代对象转元组

可迭代对象是没有长度这一概念的,如果是可迭代对象转换为元组,会先对可迭代对象的长度做一个猜想。

并且根据这个猜想,为元组开辟一片内存空间,用于存放可迭代对象的数据项。

然后内部会获取可迭代对象的迭代器,对其进行遍历操作,拿出数据项后放至元组中。

如果猜想的长度太小,会导致元组内部的内存不够存放下所有的迭代器数据项,此时该元组会进行内部的扩容机制,直至可迭代对象中的数据项全部被添加至元组中。

rangeObject = range(1, 101)
tup = tuple(rangeObject)

// 假如猜想的是9
// 第一步:+ 10 
// 第二步:+ (原长度+10) * 0.25
// 其实,就是增加【原长度*0.25 + 2.5】

如果猜想的长度太大,而实际上迭代器中的数据量偏少,则需要对该元组进行缩容。

切片取值

对元组进行切片取值的时候,会开辟一个新元组用于存放切片后得到的数据项。

tup = (1, 2, 3)
newSliceTup = tup[0:2]

当然,如果是[:]的操作,则参照绝对引用,直接返回被切片的元组引用。

代码验证:

>>> id(tup)
4384908416
>>> newSliceTup = tup[0:2]
>>> id(newSliceTup)
4384904392

缓存机制

free_list缓存

元组的缓存机制和列表的缓存机制不同。

元组的free_list会缓存0 - 19长度的共20种元组,其中每一种长度的元组通过单向链表横向扩展缓存至2000个,如下图所示:

当每一次的del操作有数据项的元组时,都会将该元组数据项清空并挂载至free_list单向链表的头部的位置。

del 元组1
del 元组2
del 元组3

如下图所示:

当要创建一个元组时,会通过创建元组的长度,从free_list单向链表的头部取出一个元组,然后将数据项存放进去。

前提是free_list单向链表中缓存的有该长度的元组。

tup = (1, 2, 3)

空元组与非空元组的缓存

空元组的缓存是一经创建就缓存到free_list单向链表中。

而非空元组的缓存必须是del操作后才缓存到free_list单向链表中。

空元组的创建

第一次创建空元组后,空元组会缓存至free_list单向链表中。

以后的每一次空元组创建,返回的其实都是同一个引用,也就是说空元组在free_list单向链表中即使被引用了也不会被销毁。

>>> t1 = ()
>>> id(t1)
4511088712
>>> t2 = ()
>>> id(t2)
4511088712

非空元组的创建

当free_list单向链表中有相同长度的元组时,会进行引用并删除。

这个在上图中已经示例过了,就是这个:

代码示例:

$ python3

Python 3.6.8 (v3.6.8:3c6b436a57, Dec 24 2018, 02:04:31)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> v1 = (None, None, None)
>>> id(v1)
4384907696
>>> v2 = (None, None, None)
>>> id(v2)
4384908056
>>> del v1
>>> del v2   # ①
>>> v3 = (None, None, None)
>>> id(v3)   # ②
4384908056
>>> v4 = (None, None, None)
>>> id(v4)   # ③
4384907696
>>>

①:free_list num_free=3 单向链表结构:v2 ―> v1

②:创建了v3,拿出v2的空元组,填入v3数据项,故v2和v3的id值相等,证明引用同一个元组,此时free_list num_free=3 单向链表结构为:―> v1

③:创建了v4,拿出v1的空元组,填入v4数据项,故v1和v4的id值相等,证明引用同一个元组

tupleobject.c源码

官网参考:点我跳转

源码一览:点我跳转

以下是截取了一些关键性源代码,并且做上了中文注释,方便查阅。

每一个元组都有几个关键性的属性:

Py_ssize_t ob_refcnt;     // 引用计数器
Py_ssize_t ob_size;       // 数据项个数,即元组大小
PyObject *ob_item[1];     // 存储元组中的数据项 [指针, ]

关于缓存free_list的属性:

PyTuple_MAXSAVESIZE     // 相当于图中的 free_num ,最大20,即纵向扩展的缓存元组长度
PyTuple_MAXFREELIST     // 图中 free_list 的横向扩展缓存列表个数,最大2000

创建元组

空元组

PyObject *
PyTuple_New(Py_ssize_t size)
{
    PyTupleObject *op;
    // 缓存相关
    Py_ssize_t i;
    
    // 元组的大小不能小于0
    if (size < 0) {
        PyErr_BadInternalCall();
        return NULL;
    }
#if PyTuple_MAXSAVESIZE > 0

    // 创建空元组,优先从缓存中获取
    // size = 0 表示这是一个空元组,从free_list[0]中获取空元组
    if (size == 0 && free_list[0]) {
        // op就是空元组
        op = free_list[0];
        // 新增空元组引用计数器 + 1
        Py_INCREF(op);
#ifdef COUNT_ALLOCS
        tuple_zero_allocs++;
#endif
        // 返回空元组的指针
        return (PyObject *) op;
    }
    
    // 如果创建的不是空元组,且这个创建的元组数据项个数小于20,并且free_list[size]不等于空,表示有缓存
    // 则从缓存中去获取,不再重新开辟内存
    if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) {
        // 拿出元组
        free_list[size] = (PyTupleObject *) op->ob_item[0];
        // num_free减1
        numfree[size]--;
#ifdef COUNT_ALLOCS
        fast_tuple_allocs++;
#endif
        /* Inline PyObject_InitVar */
        // 初始化,定义这个元组的长度为数据项个数
#ifdef Py_TRACE_REFS
        Py_SIZE(op) = size;
        // 定义类型为 tuple
        Py_TYPE(op) = &PyTuple_Type;
#endif
        // 增加一次新的引用
        _Py_NewReference((PyObject *)op);
    }
    
    // 如果是空元组
    else
#endif
    {
        // 检查内存情况,是否充足
        /* Check for overflow */
        if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - sizeof(PyTupleObject) -
                    sizeof(PyObject *)) / sizeof(PyObject *)) {
            return PyErr_NoMemory();
        }
        // 开辟内存,并获得一个元组:op
        op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size);
        if (op == NULL)
            return NULL;
    }
    
    // 空元组的每一个槽位都是NULL
    for (i=0; i < size; i++)
        op->ob_item[i] = NULL;
        
#if PyTuple_MAXSAVESIZE > 0
   // 缓存空元组
    if (size == 0) {
        free_list[0] = op;
        ++numfree[0];
        Py_INCREF(op);          /* extra INCREF so that this is never freed */
    }
#endif
#ifdef SHOW_TRACK_COUNT
    count_tracked++;
#endif

    // 将元组加入到GC机制中,用于内存管理
    _PyObject_GC_TRACK(op);
    return (PyObject *) op;
}

可迭代对象转元组

这个不在tupleobject.c源码中,而是在abstract.c源码中。

官网参考:点我跳转

源码一览:点我跳转

PyObject *
PySequence_Tuple(PyObject *v)
{
    PyObject *it;  /* iter(v) */
    Py_ssize_t n;             /* guess for result tuple size */
    PyObject *result = NULL;
    Py_ssize_t j;

    if (v == NULL) {
        return null_error();
    }

    /* Special-case the common tuple and list cases, for efficiency. */
    // 如果是元组转换元组,如 tup = (1, 2, 3) 或者 tup = ((1, 2, 3))直接返回内存地址
    if (PyTuple_CheckExact(v)) {
        Py_INCREF(v);
        return v;
    }
    
    // 如果是列表转换元组,则执行PyList_AsTuple(),将列表转换为元组
    // 如 tup = ([1, 2, 3])
    if (PyList_CheckExact(v))
        return PyList_AsTuple(v);

    /* Get iterator. */
    // 获取迭代器, tup = (range(1, 4).__iter__())
 
    it = PyObject_GetIter(v);
    if (it == NULL)
        return NULL;

    /* Guess result size and allocate space. */
    // 猜想迭代器长度,也就是猜一下有多少个数据项
    n = PyObject_LengthHint(v, 10);
    if (n == -1)
        goto Fail;
        
    // 根据猜想的迭代器长度,进行元组的内存开辟
    result = PyTuple_New(n);
    if (result == NULL)
        goto Fail;

    /* Fill the tuple. */
    // 将迭代器中每个数据项添加至元组中
    for (j = 0; ; ++j) {
        PyObject *item = PyIter_Next(it);
        if (item == NULL) {
            if (PyErr_Occurred())
                goto Fail;
            break;
        }
        
        //如果迭代器中数据项比猜想的多,则证明开辟内存不足需要需要进行扩容
        if (j >= n) {
            size_t newn = (size_t)n;
            /* The over-allocation strategy can grow a bit faster
               than for lists because unlike lists the
               over-allocation isn't permanent -- we reclaim
               the excess before the end of this routine.
               So, grow by ten and then add 25%.
            */
            
            // 假如猜想的是9
            // 第一步:+ 10 
            // 第二步:+ (原长度+10) * 0.25
            // 其实,就是增加【原长度*0.25 + 2.5】
            
            newn += 10u;
            newn += newn >> 2;
            
            // 判断是否超过了元组的数据项个数限制(sys.maxsize)
            if (newn > PY_SSIZE_T_MAX) {
                /* Check for overflow */
                PyErr_NoMemory();
                Py_DECREF(item);
                goto Fail;
            }
            n = (Py_ssize_t)newn;
            // 扩容机制
            if (_PyTuple_Resize(&result, n) != 0) {
                Py_DECREF(item);
                goto Fail;
            }
        }
        
        // 将数据项放入元组之中
        PyTuple_SET_ITEM(result, j, item);
    }

    /* Cut tuple back if guess was too large. */
    
    // 如果猜想的数据项太多,而实际上迭代器中的数据量偏少
    // 则需要对该元组进行缩容
    if (j < n &&
        _PyTuple_Resize(&result, j) != 0)
        goto Fail;

    Py_DECREF(it);
    return result;

Fail:
    Py_XDECREF(result);
    Py_DECREF(it);
    return NULL;
}

列表转元组

这个不在tupleobject.c源码中,而是在listobject.c源码中。

官网参考:点我跳转

源码一览:点我跳转

PyObject *
PyList_AsTuple(PyObject *v)
{
    PyObject *w;
    PyObject **p, **q;
    Py_ssize_t n;
    // 例如:tup = ([1, 2, 3])
    
    // 进行列表的验证
    if (v == NULL || !PyList_Check(v)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    
    // 获取大小,即数据项个数
    n = Py_SIZE(v);
    // 开辟内存
    w = PyTuple_New(n);
    
    // 如果是空元组
    if (w == NULL)
        return NULL;
        
    // 执行迁徙操作
    p = ((PyTupleObject *)w)->ob_item;
    q = ((PyListObject *)v)->ob_item;
    
    // 将列表中数据项的引用,也给元组进行引用
    // 这样列表中数据项和元组中的数据项都引用同1个对象
    while (--n >= 0) {
        // 数据项引用计数 + 1
        Py_INCREF(*q);
        *p = *q;
        p++;
        q++;
    }
    
    // 返回元组
    return w;
}

切片取值

PyObject *
PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j)
// 切片会触发该方法
{
    // 如果对空元组进行切片,则会抛出异常
    if (op == NULL || !PyTuple_Check(op)) {
        PyErr_BadInternalCall();
        return NULL;
    }
    // 内部的具体实现方法
    return tupleslice((PyTupleObject *)op, i, j);
}

static PyObject *
tupleslice(PyTupleObject *a, Py_ssize_t ilow,
           Py_ssize_t ihigh)
{
    PyTupleObject *np;
    PyObject **src, **dest;
    Py_ssize_t i;
    Py_ssize_t len;
    
    // 计算索引位置
    if (ilow < 0)
        ilow = 0;
    if (ihigh > Py_SIZE(a))
        ihigh = Py_SIZE(a);
    if (ihigh < ilow)
        ihigh = ilow;
        
    // 如果是[:]的操作,则直接返回源元组对象a的指针,即绝对引用
    if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) {
        Py_INCREF(a);
        return (PyObject *)a;
    }
    
    // 初始化新的切片对象元组长度
    len = ihigh - ilow;
    
    // 开始切片,创建了一个新元组np
    np = (PyTupleObject *)PyTuple_New(len);
    if (np == NULL)
        return NULL;
    src = a->ob_item + ilow;
    dest = np->ob_item;
    
    // 对源元组中的数据项的引用计数+1
    for (i = 0; i < len; i++) {
        PyObject *v = src[i];
        Py_INCREF(v);
        dest[i] = v;
    }
    
    // 返回切片对象新元组np的引用
    return (PyObject *)np;
}

缓存相关

static void
tupledealloc(PyTupleObject *op)
{
    Py_ssize_t i;
    Py_ssize_t len =  Py_SIZE(op);
    PyObject_GC_UnTrack(op);
    Py_TRASHCAN_SAFE_BEGIN(op)
    
    // 如果元组的长度大于0,则不是一个非空元组
    if (len > 0) {
        i = len;
        // 将内部的数据项引用计数都 - 1
        while (--i >= 0)
            Py_XDECREF(op->ob_item[i]);
#if PyTuple_MAXSAVESIZE > 0
        
        // 准备缓存,判断num_free是否小于20,并且单向链表中的已缓存元组个数小于2000
        if (len < PyTuple_MAXSAVESIZE &&
            numfree[len] < PyTuple_MAXFREELIST &&
            Py_TYPE(op) == &PyTuple_Type)
        {
            // 添加至链表头部
            op->ob_item[0] = (PyObject *) free_list[len];
            // 将num_free + 1
            numfree[len]++;
            free_list[len] = op;
            goto done; /* return */
        }
#endif
    }
    // 内存中进行销毁
    Py_TYPE(op)->tp_free((PyObject *)op);
done:
    Py_TRASHCAN_SAFE_END(op)
}

以上就是关于“Python中Tuple有何特点,怎么声明使用”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145