在一个SFC(single file component,单文件组件)中,我们经常会写这样的逻辑:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
你可能知道,在完成this.a和this.b的赋值操作后,Vue会将this.a和this.b相应的dom更新函数放到一个微任务中。等待主线程的同步任务执行完毕后,该微任务会出队并执行。我们看看Vue的官方文档"深入响应式原理-声明响应式property"一节中,是怎么进行描述的:
可能你还没有注意到,Vue 在更新 DOM 时是异步执行的。只要侦听到数据变化,Vue 将开启一个队列,并缓冲在同一事件循环中发生的所有数据变更。
那么,Vue是怎么实现这一能力的呢?为了回答这个问题,我们需要深入Vue源码的核心部分――响应式原理。
我们首先看一看在我们对this.a和this.b进行赋值操作以后,发生了什么。如果使用Vue CLI进行开发,在main.js文件中,会有一个new Vue()的实例化操作。由于Vue的源码是使用flow写的,无形中增加了理解成本。为了方便,我们直接看npm vue包中dist文件夹中的vue.js源码。搜索‘function Vue',找到了以下源码:
function Vue (options) { if (!(this instanceof Vue) ) { warn('Vue is a constructor and should be called with the `new` keyword'); } this._init(options); }
非常简单的源码,源码真的没有我们想象中那么难!带着这样的意外惊喜,我们继续找到_init函数,看看这个函数做了什么:
Vue.prototype._init = function (options) { var vm = this; // a uid vm._uid = uid$3++; var startTag, endTag; /* istanbul ignore if */ if (config.performance && mark) { startTag = "vue-perf-start:" + (vm._uid); endTag = "vue-perf-end:" + (vm._uid); mark(startTag); } // a flag to avoid this being observed vm._isVue = true; // merge options if (options && options._isComponent) { // optimize internal component instantiation // since dynamic options merging is pretty slow, and none of the // internal component options needs special treatment. initInternalComponent(vm, options); } else { vm.$options = mergeOptions( resolveConstructorOptions(vm.constructor), options || {}, vm ); } /* istanbul ignore else */ { initProxy(vm); } // expose real self vm._self = vm; initLifecycle(vm); initEvents(vm); initRender(vm); callHook(vm, 'beforeCreate'); initInjections(vm); // resolve injections before data/props initState(vm); initProvide(vm); // resolve provide after data/props callHook(vm, 'created'); /* istanbul ignore if */ if (config.performance && mark) { vm._name = formatComponentName(vm, false); mark(endTag); measure(("vue " + (vm._name) + " init"), startTag, endTag); } if (vm.$options.el) { vm.$mount(vm.$options.el); } }
我们先不管上面的一堆判断,直接拉到下面的主逻辑。可以看到,_init函数先后执行了initLifeCycle、initEvents、initRender、callHook、initInjections、initState、initProvide以及第二次callHook函数。从函数的命名来看,我们可以知道具体的意思。大体来说,这段代码分为以下两个部分
其中,我们关心的数据响应式原理部分在initState函数中,我们看看这个函数做了什么:
function initState (vm) { vm._watchers = []; var opts = vm.$options; if (opts.props) { initProps(vm, opts.props); } if (opts.methods) { initMethods(vm, opts.methods); } if (opts.data) { initData(vm); } else { observe(vm._data = {}, true /* asRootData */); } if (opts.computed) { initComputed(vm, opts.computed); } if (opts.watch && opts.watch !== nativeWatch) { initWatch(vm, opts.watch); } }
这里我们看到了在书写SFC文件时常常见到的几个配置项:props、methods、data、computed和watch。我们将注意力集中到opts.data部分,这一部分执行了initData函数:
function initData (vm) { var data = vm.$options.data; data = vm._data = typeof data === 'function' ? getData(data, vm) : data || {}; if (!isPlainObject(data)) { data = {}; warn( 'data functions should return an object:\n' + 'https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function', vm ); } // proxy data on instance var keys = Object.keys(data); var props = vm.$options.props; var methods = vm.$options.methods; var i = keys.length; while (i--) { var key = keys[i]; { if (methods && hasOwn(methods, key)) { warn( ("Method \"" + key + "\" has already been defined as a data property."), vm ); } } if (props && hasOwn(props, key)) { warn( "The data property \"" + key + "\" is already declared as a prop. " + "Use prop default value instead.", vm ); } else if (!isReserved(key)) { proxy(vm, "_data", key); } } // observe data observe(data, true /* asRootData */); }
我们在写data配置项时,会将其定义为函数,因此这里执行了getData函数:
function getData (data, vm) { // #7573 disable dep collection when invoking data getters pushTarget(); try { return data.call(vm, vm) } catch (e) { handleError(e, vm, "data()"); return {} } finally { popTarget(); } }
getData函数做的事情非常简单,就是在组件实例上下文中执行data函数。注意,在执行data函数前后,分别执行了pushTarget函数和popTarget函数,这两个函数我们后面再讲。
执行getData函数后,我们回到initData函数,后面有一个循环的错误判断,暂时不用管。于是我们来到了observe函数:
function observe (value, asRootData) { if (!isObject(value) || value instanceof VNode) { return } var ob; if (hasOwn(value, '__ob__') && value.__ob__ instanceof Observer) { ob = value.__ob__; } else if ( shouldObserve && !isServerRendering() && (Array.isArray(value) || isPlainObject(value)) && Object.isExtensible(value) && !value._isVue ) { ob = new Observer(value); } if (asRootData && ob) { ob.vmCount++; } return ob }
observe函数为data对象创建了一个观察者(ob),也就是实例化Observer,实例化Observer具体做了什么呢?我们继续看源码:
var Observer = function Observer (value) { this.value = value; this.dep = new Dep(); this.vmCount = 0; def(value, '__ob__', this); if (Array.isArray(value)) { if (hasProto) { protoAugment(value, arrayMethods); } else { copyAugment(value, arrayMethods, arrayKeys); } this.observeArray(value); } else { this.walk(value); } }
正常情况下,因为我们定义的data函数返回的都是一个对象,所以这里我们先不管对数组的处理。那么就是继续执行walk函数:
Observer.prototype.walk = function walk (obj) { var keys = Object.keys(obj); for (var i = 0; i < keys.length; i++) { defineReactive$$1(obj, keys[i]); } }
对于data函数返回的对象,即组件实例的data对象中的每个可枚举属性,执行defineReactive$$1函数:
function defineReactive$$1 ( obj, key, val, customSetter, shallow ) { var dep = new Dep(); var property = Object.getOwnPropertyDescriptor(obj, key); if (property && property.configurable === false) { return } // cater for pre-defined getter/setters var getter = property && property.get; var setter = property && property.set; if ((!getter || setter) && arguments.length === 2) { val = obj[key]; } var childOb = !shallow && observe(val); Object.defineProperty(obj, key, { enumerable: true, configurable: true, get: function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }, set: function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); } }); }
在defineReactive$$1函数中,首先实例化一个依赖收集器。然后使用Object.defineProperty重新定义对象属性的getter(即上面的get函数)和setter(即上面的set函数)。
getter和setter某种意义上可以理解为回调函数,当读取对象某个属性的值时,会触发get函数(即getter);当设置对象某个属性的值时,会触发set函数(即setter)。我们回到最开始的例子:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
这里有设置this对象的属性a和属性b的值,因此会触发setter。我们把上面set函数代码单独拿出来:
function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); }
setter先执行了getter:
function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }
getter先检测Dep.target是否存在。在前面执行getData函数的时候,Dep.target的初始值为null,它在什么时候被赋值了呢?我们前面讲getData函数的时候,有看到一个pushTarget函数和popTarget函数,这两个函数的源码如下:
Dep.target = null; var targetStack = []; function pushTarget (target) { targetStack.push(target); Dep.target = target; } function popTarget () { targetStack.pop(); Dep.target = targetStack[targetStack.length - 1]; }
想要正常执行getter,就需要先执行pushTarget函数。我们找找pushTarget函数在哪里执行的。在vue.js中搜索pushTarget,我们找到了5个地方,除去定义的地方,执行的地方有4个。
第一个执行pushTarget函数的地方。这是一个处理错误的函数,正常逻辑不会触发:
function handleError (err, vm, info) { // Deactivate deps tracking while processing error handler to avoid possible infinite rendering. // See: https://github.com/vuejs/vuex/issues/1505 pushTarget(); try { if (vm) { var cur = vm; while ((cur = cur.$parent)) { var hooks = cur.$options.errorCaptured; if (hooks) { for (var i = 0; i < hooks.length; i++) { try { var capture = hooks[i].call(cur, err, vm, info) === false; if (capture) { return } } catch (e) { globalHandleError(e, cur, 'errorCaptured hook'); } } } } } globalHandleError(err, vm, info); } finally { popTarget(); } }
第二个执行pushTarget的地方。这是调用对应的钩子函数。在执行到对应的钩子函数时会触发。不过,我们现在的操作介于beforeCreate钩子和created钩子之间,还没有触发:
function callHook (vm, hook) { // #7573 disable dep collection when invoking lifecycle hooks pushTarget(); var handlers = vm.$options[hook]; var info = hook + " hook"; if (handlers) { for (var i = 0, j = handlers.length; i < j; i++) { invokeWithErrorHandling(handlers[i], vm, null, vm, info); } } if (vm._hasHookEvent) { vm.$emit('hook:' + hook); } popTarget(); }
第三个执行pushTarget的地方。这是实例化watcher时执行的函数。检查前面的代码,我们似乎也没有看到new Watcher的操作:
Watcher.prototype.get = function get () { pushTarget(this); var value; var vm = this.vm; try { value = this.getter.call(vm, vm); } catch (e) { if (this.user) { handleError(e, vm, ("getter for watcher \"" + (this.expression) + "\"")); } else { throw e } } finally { // "touch" every property so they are all tracked as // dependencies for deep watching if (this.deep) { traverse(value); } popTarget(); this.cleanupDeps(); } return value }
第四个执行pushTarget的地方,这就是前面的getData函数。但是getData函数的执行位于defineReactive$$1函数之前。在执行完getData函数以后,Dep.target已经被重置为null了。
function getData (data, vm) { // #7573 disable dep collection when invoking data getters pushTarget(); try { return data.call(vm, vm) } catch (e) { handleError(e, vm, "data()"); return {} } finally { popTarget(); } }
看起来,直接触发setter并不能让getter中的逻辑正常执行。并且,我们还发现,由于setter中也有Dep.target的判断,所以如果我们找不到Dep.target的来源,setter的逻辑也无法继续往下走。
那么,到底Dep.target的值是从哪里来的呢?不用着急,我们回到_init函数的操作继续往下看:
Vue.prototype._init = function (options) { var vm = this; // a uid vm._uid = uid$3++; var startTag, endTag; /* istanbul ignore if */ if (config.performance && mark) { startTag = "vue-perf-start:" + (vm._uid); endTag = "vue-perf-end:" + (vm._uid); mark(startTag); } // a flag to avoid this being observed vm._isVue = true; // merge options if (options && options._isComponent) { // optimize internal component instantiation // since dynamic options merging is pretty slow, and none of the // internal component options needs special treatment. initInternalComponent(vm, options); } else { vm.$options = mergeOptions( resolveConstructorOptions(vm.constructor), options || {}, vm ); } /* istanbul ignore else */ { initProxy(vm); } // expose real self vm._self = vm; initLifecycle(vm); initEvents(vm); initRender(vm); callHook(vm, 'beforeCreate'); initInjections(vm); // resolve injections before data/props initState(vm); initProvide(vm); // resolve provide after data/props callHook(vm, 'created'); /* istanbul ignore if */ if (config.performance && mark) { vm._name = formatComponentName(vm, false); mark(endTag); measure(("vue " + (vm._name) + " init"), startTag, endTag); } if (vm.$options.el) { vm.$mount(vm.$options.el); } }
我们发现,在_init函数的最后,执行了vm.$mount函数,这个函数做了什么呢?
Vue.prototype.$mount = function ( el, hydrating ) { el = el && inBrowser ? query(el) : undefined; return mountComponent(this, el, hydrating) }
我们继续进入mountComponent函数看看:
function mountComponent ( vm, el, hydrating ) { vm.$el = el; if (!vm.$options.render) { vm.$options.render = createEmptyVNode; { /* istanbul ignore if */ if ((vm.$options.template && vm.$options.template.charAt(0) !== '#') || vm.$options.el || el) { warn( 'You are using the runtime-only build of Vue where the template ' + 'compiler is not available. Either pre-compile the templates into ' + 'render functions, or use the compiler-included build.', vm ); } else { warn( 'Failed to mount component: template or render function not defined.', vm ); } } } callHook(vm, 'beforeMount'); var updateComponent; /* istanbul ignore if */ if (config.performance && mark) { updateComponent = function () { var name = vm._name; var id = vm._uid; var startTag = "vue-perf-start:" + id; var endTag = "vue-perf-end:" + id; mark(startTag); var vnode = vm._render(); mark(endTag); measure(("vue " + name + " render"), startTag, endTag); mark(startTag); vm._update(vnode, hydrating); mark(endTag); measure(("vue " + name + " patch"), startTag, endTag); }; } else { updateComponent = function () { vm._update(vm._render(), hydrating); }; } // we set this to vm._watcher inside the watcher's constructor // since the watcher's initial patch may call $forceUpdate (e.g. inside child // component's mounted hook), which relies on vm._watcher being already defined new Watcher(vm, updateComponent, noop, { before: function before () { if (vm._isMounted && !vm._isDestroyed) { callHook(vm, 'beforeUpdate'); } } }, true /* isRenderWatcher */); hydrating = false; // manually mounted instance, call mounted on self // mounted is called for render-created child components in its inserted hook if (vm.$vnode == null) { vm._isMounted = true; callHook(vm, 'mounted'); } return vm }
我们惊喜地发现,这里有一个new Watcher的操作!真是山重水复疑无路,柳暗花明又一村!这里实例化的watcher是一个用来更新dom的watcher。他会依次读取SFC文件中的template部分中的所有值。这也就意味着会触发对应的getter。
由于new Watcher会执行watcher.get函数,该函数执行pushTarget函数,于是Dep.target被赋值。getter内部的逻辑顺利执行。
至此,我们终于到了Vue的响应式原理的核心。我们再次回到getter,看一看有了Dep.target以后,getter做了什么:
function reactiveGetter () { var value = getter ? getter.call(obj) : val; if (Dep.target) { dep.depend(); if (childOb) { childOb.dep.depend(); if (Array.isArray(value)) { dependArray(value); } } } return value }
同样地,我们先不关注提高代码健壮性的细节处理,直接看主线。可以看到,当Dep.target存在时,执行了dep.depend函数。这个函数做了什么呢?我们看看代码:
Dep.prototype.depend = function depend () { if (Dep.target) { Dep.target.addDep(this); } }
做的事情也非常简单。就是执行了Dep.target.addDep函数。但是Dep.target其实是一个watcher,所以我们要回到Watcher的代码:
Watcher.prototype.addDep = function addDep (dep) { var id = dep.id; if (!this.newDepIds.has(id)) { this.newDepIds.add(id); this.newDeps.push(dep); if (!this.depIds.has(id)) { dep.addSub(this); } } }
同样地,我们先忽略一些次要的逻辑处理,把注意力集中到dep.addSub函数上:
Dep.prototype.addSub = function addSub (sub) { this.subs.push(sub); }
也是非常简单的逻辑,把watcher作为一个订阅者推入数组中缓存。至此,getter的整个逻辑走完。此后执行popTarget函数,Dep.target被重置为null
我们再次回到业务代码:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
在created生命周期中,我们触发了两次setter,setter执行的逻辑如下:
function reactiveSetter (newVal) { var value = getter ? getter.call(obj) : val; /* eslint-disable no-self-compare */ if (newVal === value || (newVal !== newVal && value !== value)) { return } /* eslint-enable no-self-compare */ if (customSetter) { customSetter(); } // #7981: for accessor properties without setter if (getter && !setter) { return } if (setter) { setter.call(obj, newVal); } else { val = newVal; } childOb = !shallow && observe(newVal); dep.notify(); }
这里,我们只需要关注setter最后执行的函数:dep.notify()。我们看看这个函数做了什么:
Dep.prototype.notify = function notify () { // stabilize the subscriber list first var subs = this.subs.slice(); if (!config.async) { // subs aren't sorted in scheduler if not running async // we need to sort them now to make sure they fire in correct // order subs.sort(function (a, b) { return a.id - b.id; }); } for (var i = 0, l = subs.length; i < l; i++) { subs[i].update(); } }
This.subs的每一项元素均为一个watcher。在上面getter章节中,我们只收集到了一个watcher。因为触发了两次setter,所以subs[0].update(),即watcher.update()函数会执行两次。我们看看这个函数做了什么:
Watcher.prototype.update = function update () { /* istanbul ignore else */ if (this.lazy) { this.dirty = true; } else if (this.sync) { this.run(); } else { queueWatcher(this); } }
按照惯例,我们直接跳入queueWatcher函数:
function queueWatcher (watcher) { var id = watcher.id; if (has[id] == null) { has[id] = true; if (!flushing) { queue.push(watcher); } else { // if already flushing, splice the watcher based on its id // if already past its id, it will be run next immediately. var i = queue.length - 1; while (i > index && queue[i].id > watcher.id) { i--; } queue.splice(i + 1, 0, watcher); } // queue the flush if (!waiting) { waiting = true; if (!config.async) { flushSchedulerQueue(); return } nextTick(flushSchedulerQueue); } } }
由于id相同,所以watcher的回调函数只会被推入到queue一次。这里我们再次看到了一个熟悉的面孔:nextTick。
function nextTick (cb, ctx) { var _resolve; callbacks.push(function () { if (cb) { try { cb.call(ctx); } catch (e) { handleError(e, ctx, 'nextTick'); } } else if (_resolve) { _resolve(ctx); } }); if (!pending) { pending = true; timerFunc(); } // $flow-disable-line if (!cb && typeof Promise !== 'undefined') { return new Promise(function (resolve) { _resolve = resolve; }) } }
nextTick函数将回调函数再次包裹一层后,执行timerFunc()
var timerFunc; // The nextTick behavior leverages the microtask queue, which can be accessed // via either native Promise.then or MutationObserver. // MutationObserver has wider support, however it is seriously bugged in // UIWebView in iOS >= 9.3.3 when triggered in touch event handlers. It // completely stops working after triggering a few times... so, if native // Promise is available, we will use it: /* istanbul ignore next, $flow-disable-line */ if (typeof Promise !== 'undefined' && isNative(Promise)) { var p = Promise.resolve(); timerFunc = function () { p.then(flushCallbacks); // In problematic UIWebViews, Promise.then doesn't completely break, but // it can get stuck in a weird state where callbacks are pushed into the // microtask queue but the queue isn't being flushed, until the browser // needs to do some other work, e.g. handle a timer. Therefore we can // "force" the microtask queue to be flushed by adding an empty timer. if (isIOS) { setTimeout(noop); } }; isUsingMicroTask = true; } else if (!isIE && typeof MutationObserver !== 'undefined' && ( isNative(MutationObserver) || // PhantomJS and iOS 7.x MutationObserver.toString() === '[object MutationObserverConstructor]' )) { // Use MutationObserver where native Promise is not available, // e.g. PhantomJS, iOS7, Android 4.4 // (#6466 MutationObserver is unreliable in IE11) var counter = 1; var observer = new MutationObserver(flushCallbacks); var textNode = document.createTextNode(String(counter)); observer.observe(textNode, { characterData: true }); timerFunc = function () { counter = (counter + 1) % 2; textNode.data = String(counter); }; isUsingMicroTask = true; } else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) { // Fallback to setImmediate. // Technically it leverages the (macro) task queue, // but it is still a better choice than setTimeout. timerFunc = function () { setImmediate(flushCallbacks); }; } else { // Fallback to setTimeout. timerFunc = function () { setTimeout(flushCallbacks, 0); }; }
timerFunc函数是微任务的平稳降级。他将根据所在环境的支持程度,依次调用Promise、MutationObserver、setImmediate和setTimeout。并在对应的微任务或者模拟微任务队列中执行回调函数。
function flushSchedulerQueue () { currentFlushTimestamp = getNow(); flushing = true; var watcher, id; // Sort queue before flush. // This ensures that: // 1. Components are updated from parent to child. (because parent is always // created before the child) // 2. A component's user watchers are run before its render watcher (because // user watchers are created before the render watcher) // 3. If a component is destroyed during a parent component's watcher run, // its watchers can be skipped. queue.sort(function (a, b) { return a.id - b.id; }); // do not cache length because more watchers might be pushed // as we run existing watchers for (index = 0; index < queue.length; index++) { watcher = queue[index]; if (watcher.before) { watcher.before(); } id = watcher.id; has[id] = null; watcher.run(); // in dev build, check and stop circular updates. if (has[id] != null) { circular[id] = (circular[id] || 0) + 1; if (circular[id] > MAX_UPDATE_COUNT) { warn( 'You may have an infinite update loop ' + ( watcher.user ? ("in watcher with expression \"" + (watcher.expression) + "\"") : "in a component render function." ), watcher.vm ); break } } } // keep copies of post queues before resetting state var activatedQueue = activatedChildren.slice(); var updatedQueue = queue.slice(); resetSchedulerState(); // call component updated and activated hooks callActivatedHooks(activatedQueue); callUpdatedHooks(updatedQueue); // devtool hook /* istanbul ignore if */ if (devtools && config.devtools) { devtools.emit('flush'); } }
回调函数的核心逻辑是执行watcher.run函数:
Watcher.prototype.run = function run () { if (this.active) { var value = this.get(); if ( value !== this.value || // Deep watchers and watchers on Object/Arrays should fire even // when the value is the same, because the value may // have mutated. isObject(value) || this.deep ) { // set new value var oldValue = this.value; this.value = value; if (this.user) { try { this.cb.call(this.vm, value, oldValue); } catch (e) { handleError(e, this.vm, ("callback for watcher \"" + (this.expression) + "\"")); } } else { this.cb.call(this.vm, value, oldValue); } } } }
执行this.cb函数,即watcher的回调函数。至此,所有的逻辑走完。
我们再次回到业务场景:
<template> <div> <span>{{ a }}</span> <span>{{ b }}</span> </div> </template> <script type="javascript"> export default { data() { return { a: 0, b: 0 } }, created() { // some logic code this.a = 1 this.b = 2 } } </script>
虽然我们触发了两次setter,但是对应的渲染函数在微任务中却只执行了一次。也就是说,在dep.notify函数发出通知以后,Vue将对应的watcher进行了去重、排队操作并最终执行回调。
可以看出,两次赋值操作实际上触发的是同一个渲染函数,这个渲染函数更新了多个dom。这就是所谓的批量更新dom。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理