怎么新建MySQL数据库

发布时间:2022-07-05 作者:admin
阅读:584
这篇文章将为大家详细讲解有关“Pandas对多列分组统计的操作方法具体是怎样的”的知识,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

使用groupby([ ]).size()统计的结果,值相同的字段值会不显示


如上图所示,第一个空着的行是982499 7 3388 1,因为此行与前面一行的这两个字段值是一样的,所以不显示。第二个空着的行是390192 22 4278 1,因为此行与前面一行的第一个字段值是一样的,所以不显示。这样的展示方式更直观,但对于刚用的人,可能会让其以为是缺失值。

如果还不明白可以看下面的全部数据及操作。

import pandas as pd
res6 = pd.read_csv('test.csv')
res6.shape
(12, 3)
res6.columns
Index(['user_id', 'cate', 'shop_id'], dtype='object')
res6.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12 entries, 0 to 11
Data columns (total 3 columns):
user_id    12 non-null int64
cate       12 non-null int64
shop_id    12 non-null int64
dtypes: int64(3)
memory usage: 368.0 bytes
res6.describe()

user_id cate shop_id
count 1.200000e+01 12.000000 12.000000
mean 6.468688e+05 10.666667 3594.000000
std 3.988181e+05 6.665151 373.271775
min 2.421410e+05 7.000000 3388.000000
25% 3.901920e+05 7.000000 3388.000000
50% 4.938730e+05 7.000000 3388.000000
75% 9.824990e+05 10.250000 3586.250000
max 1.558165e+06 23.000000 4278.000000

res6

user_id cate shop_id
0 390192 20 4178
1 390192 23 4179
2 390192 22 4278
3 1021819 7 3388
4 242141 7 3388
5 283284 7 3388
6 1558165 7 3388
7 533696 7 3388
8 982499 7 3388
9 493873 7 3388
10 493873 7 3388
11 982499 7 3389

res6['user_id'].value_counts()

390192     3
982499     2
493873     2
242141     1
1021819    1
533696     1
1558165    1
283284     1
Name: user_id, dtype: int64
res6.groupby(['user_id']).size().sort_values(ascending=False)

user_id
390192     3
982499     2
493873     2
1558165    1
1021819    1
533696     1
283284     1
242141     1
dtype: int64

res6.groupby(['user_id', 'cate']).size().sort_values(ascending=False)

user_id  cate
982499   7       2
493873   7       2
1558165  7       1
1021819  7       1
533696   7       1
390192   23      1
         22      1
         20      1
283284   7       1
242141   7       1
dtype: int64
res6_test = res6.groupby(['user_id', 'cate', 'shop_id']).size().sort_values(ascending=False)
res6_test
user_id  cate  shop_id
493873   7     3388       2
1558165  7     3388       1
1021819  7     3388       1
982499   7     3389       1
               3388       1
533696   7     3388       1
390192   23    4179       1
         22    4278       1
         20    4178       1
283284   7     3388       1
242141   7     3388       1
dtype: int64

“Pandas对多列分组统计的操作方法具体是怎样的”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145