怎么新建MySQL数据库

发布时间:2022-06-28 作者:admin
阅读:900
在这篇文章中,我们来学习一下“pytorch预测结果不一致的情况怎么办,如何处理”的相关知识,下文有详细的讲解,易于大家学习和理解,有需要的朋友可以借鉴参考,下面就请大家跟着小编的思路一起来学习一下吧。

为什么多次预测结果不一致

1、检查是否在每次预测前使用

model.eval()

或者是

with torch.no_grad():
   for ...

推荐下面的方法,上面的的方法计算梯度,但是并不反向传播,下面的方法既不计算梯度,也不反向传播,速度更快。

2、检查是否取消了所有的dropout

3、设置随机种子

def setup_seed(seed):
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed) #cpu
    torch.cuda.manual_seed_all(seed)  #并行gpu
    torch.backends.cudnn.deterministic = True  #cpu/gpu结果一致
    torch.backends.cudnn.benchmark = True   #训练集变化不大时使训练加速

4、保证实例化模型前要将is_training置为false;这两行代码顺序不能颠倒


到此这篇关于“pytorch预测结果不一致的情况怎么办,如何处理”的文章就介绍到这了,更多相关pytorch预测结果不一致的情况怎么办,如何处理内容,欢迎关注群英网络技术资讯频道,小编将为大家输出更多高质量的实用文章!

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145