怎么新建MySQL数据库

发布时间:2022-06-18 作者:admin
阅读:505
这篇文章主要讲解了“Python中OpenCV如何实现多模板匹配,有哪些知识点”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。



模板匹配的作用在图像识别领域作用可大了。那什么是模板匹配?模板匹配,就是在一幅图像中寻找另一幅模板图像最匹配(也就是最相似)的部分的技术。

多模板匹配

在上一篇的实战中,我们通过人物眼睛的子图,找出了其在图像中出现位置。但是,有些情况下,并不仅仅只有一次,比如我们讲解傅里叶变换时,曾介绍一张草原的狮子图。如果匹配某个草,可能单个图像内会有很多,这个时候就要找出多个匹配结果。

而函数cv2.minMaxLoc()仅仅能找出最值,无法给出所有匹配区域的位置信息。所以,要想匹配多个结果,就需要进行如下4个步骤:

获取匹配位置的集合

首先,Numpy库中的函数where()能够获取模板匹配位置的集合。对于不同的输入,其返回值是不同的。

  • 当输入是一维数组时,返回值是一维索引,只是一组索引数组。
  • 当输入是二维数组时,返回的是匹配值的位置索引,因此会有两组索引数组表示返回值的位置。

比如,我们的灰度图像一般都是二维数组。下面,我们来查找一个二维数组中,值大于8的元素索引:

import numpy as np

img = np.array([[2, 4, 6, 8, 10], [9, 60, 10, 30, 4], [55, 21, 11, 7, 5]])
result = np.where(img > 5)
print(result)

运行之后,控制台会输出如下内容:


如果你对Numpy不是很了解的化。下面博主在将数据转换以下,基本上都能看懂了。转换之后,格式如下:


第一行为大于5的值的X坐标,第二行为大于5的值的Y坐标。那么上面大于5的数组索引为:[0,2],[0,3],[0,4],[1,0],[1,1],[1,2],[1,3],[2,0],[2,1],[2,2],[2,3]。你可以回溯对比看看是不是一致的。

通过np.where()函数可以找出在cv2.matchTemplate()函数的返回值中,哪些位置上的值是大于阈值threshold的。具体操作代码如下:

loc=np.where(res>threshold)

循环

因为我们找到的原图对应的模板图像不止一个,要处理多个值,肯定会用到循环。因此,在获取匹配值的索引后,可以采用如下语句遍历所有匹配的位置,对这些位置做标记:

for i in 匹配位置集合:
	标记匹配位置

在循环中使用zip()

函数zip()用可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

例如,我们获取的索引为x,y,z。下面我们使用zip()将它们打包成元组。代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = np.array([[2, 4, 6, 8, 10], [9, 60, 10, 30, 4], [55, 21, 11, 7, 5]])
result = np.where(img > 5)
for i in zip(*result):
    print(i)

这里我们还是使用上面的值,输出结果如下:


这里自动将我们刚才满足条件的索引打包成了元素格式。是不是比刚才的控制台输出结果更加的直观呢?

替换坐标

我们上面得到的结果是符合条件的索引:(行号,列号),但我们需要绘制匹配位置的矩形,需要的是(列号,行号)。

所以,在使用cv2.rectangle()绘制矩形前,要先将函数numpy.where()得到的位置索引行列互换,行列互换可以通过如下代码实现:

import numpy as np

img = np.array([[2, 4, 6, 8, 10], [9, 60, 10, 30, 4], [55, 21, 11, 7, 5]])
result = np.where(img > 5)
for i in zip(*result[::-1]):
    print(i)

运行之后,输出结果如下:

实战多模板匹配

既然我们已经了解了标记绘制多个模板位置的4个步骤。下面,我们直接将上面的代码整理以下,即可完成多模板的匹配。具体代码如下所示:

import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread("34.jpg", 0)
template = cv2.imread("4_1.jpg", 0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.9
loc = np.where(res >= 0.9)
for i in zip(*loc[::-1]):
    cv2.rectangle(img, i, (i[0] + w, i[1] + h), 255, 1)
plt.imshow(img, cmap="gray")
plt.axis("off")
plt.show()

这里的代码与上面4个步骤一摸一样,具体就不做过多的讲解了。运行之后,多个模板也就匹配完成。


附录:

模板图


原图

实例:基于opencv的多目标模板匹配

利用opencv进行多目标模板匹配,只要是利用其matchTemplate函数,但在多目标(这里是讨论目标图片中不同大小模板的匹配),以下贴出代码和图片,供大家参考:

#include <opencv2\core\core.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\imgproc\imgproc.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Point getNextMinLoc(Mat &result, Point minLoc, int maxValue, int templatW, int templatH);

int main(void)
{
 Mat src = imread("1_2.png");
 Mat srcCopy = src.clone();
 
 Mat temp = imread("1_4.png");
 Mat result;

 if (src.empty() || temp.empty())
 {
  cout << "打开图片失败" << endl;
  return 0;
 }

 vector<Mat> templat;
 vector<float> minV;
 vector<Point> minL;

 int srcW, srcH, templatW, templatH, resultH, resultW;
 srcW = src.cols;
 srcH = src.rows;
 templat.push_back(temp);
 double minValue, maxValue;
 Point minLoc, maxLoc;

 for (int i=0;i<10;i++)
 {
  cout << i << ": ";
  templatW = templat[i].cols;
  templatH = templat[i].rows;

  if (srcW < templatW || srcH < templatH)
  {
   cout << "模板不能比原图大" << endl;
   return 0;
  }

  resultW = srcW - templatW + 1;
  resultH = srcH - templatH + 1;

  result.create(Size(resultW, resultH), CV_32FC1);
  matchTemplate(src, templat[i], result, CV_TM_SQDIFF_NORMED);

  minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc);

  cout << "min1: " << minValue << endl;
  if (minValue<=0.070055)
  {
   rectangle(srcCopy, minLoc, Point(minLoc.x + templatW, minLoc.y + templatH), Scalar(0, 0, 255), 2, 8, 0);

   Point new_minLoc;
   new_minLoc = getNextMinLoc(result, minLoc, maxValue, templatW, templatH);
   
   float *data = result.ptr<float>(new_minLoc.y);

   cout << "min2: " << data[new_minLoc.x] << " ";
   if (data[new_minLoc.x]<=0.5)
   {
    cout << "进这个函数了:" << i << ":" << new_minLoc.x;
    cout << " " << new_minLoc.y;
    rectangle(srcCopy, new_minLoc, Point(new_minLoc.x + templatW, new_minLoc.y + templatH),
     Scalar(0, 255, 0), 2, 8, 0);
    new_minLoc = getNextMinLoc(result, new_minLoc, maxValue, templatW, templatH);
   }

   float *data1 = result.ptr<float>(new_minLoc.y);
   cout << "min3: " << data1[new_minLoc.x] << " " << endl;
   if (data1[new_minLoc.x] <= 0.4)
   {
    
    rectangle(srcCopy, new_minLoc, Point(new_minLoc.x + templatW, new_minLoc.y + templatH),
     Scalar(255, 0, 0), 2, 8, 0);
   }
  }
  cout << "#" << endl;
  Mat temp_templat;
  resize(templat[i], temp_templat, Size(templat[i].cols / 1.1, templat[i].rows / 1.1));
  templat.push_back(temp_templat);
 }

 imshow("结果", srcCopy);
 waitKey(0);
 return 0;
}

Point getNextMinLoc(Mat &result, Point minLoc, int maxValue, int templatW, int templatH)
{
 //imshow("result", result);
 //cout << "maxvalue: " << maxValue << endl;
 int startX = minLoc.x - templatW / 3;
 int startY = minLoc.y - templatH / 3;
 int endX = minLoc.x + templatW / 3;
 int endY = minLoc.y + templatH / 3;
 if (startX < 0 || startY < 0)
 {
  startX = 0;
  startY = 0;
 }
 if (endX > result.cols - 1 || endY > result.rows - 1)
 {
  endX = result.cols - 1;
  endY = result.rows - 1;
 }
 int y, x;
 for (y = startY; y < endY; y++)
 {
  for (x = startX; x < endX; x++)
  {
   float *data = result.ptr<float>(y);
   
   data[x] = maxValue;
  }
 }
 double new_minValue, new_maxValue;
 Point new_minLoc, new_maxLoc;
 minMaxLoc(result, &new_minValue, &new_maxValue, &new_minLoc, &new_maxLoc);
 //imshow("result_end", result);
 return new_minLoc;
}

以下是结果图:


上述内容具有一定的借鉴价值,感兴趣的朋友可以参考,希望能对大家有帮助,想要了解更多"Python中OpenCV如何实现多模板匹配,有哪些知识点"的内容,大家可以关注群英网络的其它相关文章。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145