怎么新建MySQL数据库

发布时间:2022-06-17 作者:admin
阅读:643
这篇文章给大家分享的是Python中用pandas对学生成绩数据分析怎样做。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。

安装Pandas

Pandas是构建在Python编程语言之上的一个快速、强大、灵活且易于使用的开源数据分析和操作工具。Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集。

我们使用pip进行安装(如果没有可自行查询如何安装pip)安装panda最简单的方法是将其作为Anaconda的一部分安装,Anaconda主要用于数据分析和科学计算。还提供源代码、PyPI、ActivePython、各种Linux发行版或开发版本进行安装的说明。

当然,最为基础的Python环境还是少不了的,如果你是Linux或使用的Mac就不用安装Python了。

pip install pandas

分析过程

1.从excel文件中读出本班同学的成绩册,并处理好缺失值。

2.根据‘加分'和‘减分'两列统计出平时成绩。

3.将实验报告成绩从ABCD转换为百分制,统计出实验成绩。A为90分,B为75分,C为60分,D为40分。

4.随机生成假设的期末成绩,取值区间为40-100分。将自己的期末成绩改成你觉得可能考到的分数。

5.按照平时成绩20%,实验成绩30%,期末成绩50%的比例计算综合成绩。

6.输出你自己的平时成绩,实验成绩,期末成绩和综合成绩。

7.统计全班综合成绩[90,100],[80,89],[70,79],[60-69],[0,59]各段成绩的人数,并画饼图。

8.将完整的成绩保存到score.xlsx文件中,打开excel检查输出是否正确。

完整实例

准备工作:导入需要用到的模块

import pandas as pd
import numpy as np
import random
from matplotlib import pyplot as plt

(1)从excel文件中读出本班同学的成绩册,并处理好缺失值。

df=pd.read_csv("4班平时成绩.csv",encoding="gbk")
df=df.rename(columns={"ID":"学号"})#将列名ID重命名
df.set_index("姓名",inplace=True)#将姓名作为index
df=df.fillna(method="backfill")#处理缺失值

(2)根据‘加分'和‘减分'两列统计出平时成绩。

df["平时成绩"]=df["平时成绩"]-df["减分"]
df=df.drop("减分",axis=1)#删除列

(3)将实验报告成绩从ABCD转换为百分制,统计出实验成绩。A为90分,B为75分,C为60分,D为40分。

def m(x):#2 将ABCD转化为对应的分数
    if x=="A":
        return 90
    if x=="B":
        return 75
    if x=="C":
        return 60
    if x=="D":
        return 40
df["第一次实验报告"]=df.第一次实验报告.map(m)
df["第二次实验报告"]=df.第二次实验报告.map(m)
df["第三次实验报告"]=df.第三次实验报告.map(m)

(4)随机生成假设的期末成绩,取值区间为40-100分。将自己的期末成绩改成你觉得可能考到的分数。

def cj(x):
    return random.randint(40,100)
df["期末成绩"]=""
df["期末成绩"]=df.期末成绩.map(cj)
df

(5)按照平时成绩20%,实验成绩30%,期末成绩50%的比例计算综合成绩。

df["综合成绩"]=df["期末成绩"]*0.5+df["平时成绩"]*0.2+df["第一次实验报告"]*0.1+\
                            df["第二次实验报告"]*0.1+df["第三次实验报告"]*0.1
df

(6)输出你自己的平时成绩,实验成绩,期末成绩和综合成绩。

df[df.姓名=='只为你220']

(7)统计全班综合成绩[90,100],[80,89],[70,79],[60-69],[0,59]各段成绩的人数,并画饼图。

y=pd.cut(df['综合成绩'],bins=[0,60,70,80,90,100],\
         labels=['0-59','60-69','70-79','80-89','90-100'])#分区间
a=y.value_counts()#统计区间人数
print(a)
plt.rcParams['font.sans-serif']=['SimHei']
a.plot(kind='pie',title='学生成绩区间统计图')

(8)将完整的成绩保存到score.xlsx文件中,打开excel检查输出是否正确。

将结果保存为.xlsx文件

df.to_excel(excel_writer="score.xlsx",index=False,encoding='utf-8')

将刚刚保存的.xlsx文件打开,查看结果是否正确

pd.read_excel("score.xlsx")

总结



以上就是关于“Python中用pandas对学生成绩数据分析怎样做”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

二维码-群英

长按识别二维码并关注微信

更方便到期提醒、手机管理

7*24 全天候服务

售前 400-678-4567

售后 0668-2555666

售后 400 678 4567

信息安全 0668-2555 118

域名空间 3004329145