model.eval()是用来告知model内的各个layer采取eval模式工作。这个操作主要是应对诸如dropout和batchnorm这些在训练模式下需要采取不同操作的特殊layer。训练和测试的时候都可以开启。
torch.no_grad()则是告知自动求导引擎不要进行求导操作。这个操作的意义在于加速计算、节约内存。但是由于没有gradient,也就没有办法进行backward。所以只能在测试的时候开启。
所以在evaluate的时候,需要同时使用两者。
model = ... dataset = ... loss_fun = ... # training lr=0.001 model.train() for x,y in dataset: model.zero_grad() p = model(x) l = loss_fun(p, y) l.backward() for p in model.parameters(): p.data -= lr*p.grad # evaluating sum_loss = 0.0 model.eval() with torch.no_grad(): for x,y in dataset: p = model(x) l = loss_fun(p, y) sum_loss += l print('total loss:', sum_loss)
另外no_grad还可以作为函数是修饰符来用,从而简化代码。
def train(model, dataset, loss_fun, lr=0.001): model.train() for x,y in dataset: model.zero_grad() p = model(x) l = loss_fun(p, y) l.backward() for p in model.parameters(): p.data -= lr*p.grad @torch.no_grad() def test(model, dataset, loss_fun): sum_loss = 0.0 model.eval() for x,y in dataset: p = model(x) l = loss_fun(p, y) sum_loss += l return sum_loss # main block: model = ... dataset = ... loss_fun = ... # training train() # test sum_loss = test() print('total loss:', sum_loss)
补充:pytorch中model.train、model.eval以及torch.no_grad的用法
启用 BatchNormalization 和 Dropout
model.train() 让model变成训练模式,此时 dropout和batch normalization的操作在训练起到防止网络过拟合的问题
不启用 BatchNormalization 和 Dropout
model.eval(),pytorch会自动把BN和DropOut固定住,而用训练好的值。不然的话,一旦test的batch_size过小,很容易就会被BN层导致所生成图片颜色失真极大
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有batch normalization层所带来的的性质。
对于在训练和测试时为什么要这样做,可以从下面两段话理解:
在训练的时候, 会计算一个batch内的mean 和var, 但是因为是小batch小batch的训练的,所以会采用加权或者动量的形式来将每个batch的 mean和var来累加起来,也就是说再算当前的batch的时候,其实当前的权重只是占了0.1, 之前所有训练过的占了0.9的权重,这样做的好处是不至于因为某一个batch太过奇葩而导致的训练不稳定。
好,现在假设训练完成了, 那么在整个训练集上面也得到了一个最终的”mean 和var”, BN层里面的参数也学习完了(如果指定学习的话),而现在需要测试了,测试的时候往往会一张图一张图的去测,这时候没有batch而言了,对单独一个数据做 mean和var是没有意义的, 那么怎么办,实际上在测试的时候BN里面用的mean和var就是训练结束后的mean_final 和 val_final. 也可说是在测试的时候BN就是一个变换。所以在用pytorch的时候要注意这一点,在训练之前要有model.train() 来告诉网络现在开启了训练模式,在eval的时候要用”model.eval()”, 用来告诉网络现在要进入测试模式了.因为这两种模式下BN的作用是不同的。
这条语句的作用是:在测试时不进行梯度的计算,这样可以在测试时有效减小显存的占用,以免发生显存溢出(OOM)。
这条语句通常加在网络预测的那条代码上。
在PyTorch中进行validation时,会使用model.eval()切换到测试模式,在该模式下,
主要用于通知dropout层和batchnorm层在train和val模式间切换
在train模式下,dropout网络层会按照设定的参数p设置保留激活单元的概率(保留概率=p); batchnorm层会继续计算数据的mean和var等参数并更新。
在val模式下,dropout层会让所有的激活单元都通过,而batchnorm层会停止计算和更新mean和var,直接使用在训练阶段已经学出的mean和var值。
该模式不会影响各层的gradient计算行为,即gradient计算和存储与training模式一样,只是不进行反传(backprobagation)
而with torch.zero_grad()则主要是用于停止autograd模块的工作,以起到加速和节省显存的作用,具体行为就是停止gradient计算,从而节省了GPU算力和显存,但是并不会影响dropout和batchnorm层的行为。
如果不在意显存大小和计算时间的话,仅仅使用model.eval()已足够得到正确的validation的结果;而with torch.zero_grad()则是更进一步加速和节省gpu空间(因为不用计算和存储gradient),从而可以更快计算,也可以跑更大的batch来测试。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理